

CompuGen SDK
User’s Guide

For CompuGen 1100,

CompuGen T30 and CompuGen 3250

Supporting:

• CompuGen SDKs for DOS (SDK v3.00+)

• CompuGen SDKs for Win 95/98
and Win NT (SDK v1.00+)

• CompuGen SDKs for LabVIEW for Win 95/98 and
Win NT (SDK v1.00+, LabVIEW 4.0+)

With Sample Programs in C/C++ and Visual BASIC

P/N: 0045023
Reorder #: MKT-SWM-CGD06

0404

CompuGen SDK User’s Guide 2

© Copyright Gage Applied Technologies, Inc. 2000

Third Edition (April 1999)
CompuGen, CompuGen for Windows, CGWin, CompuGen 1100, CG1100, CompuGen 840, CG840, CompuGen
840A, CG840A, CompuGen T30, CGT30, CompuGen T16, and CGT16 are registered trademarks of Gage Applied
Technologies, Inc. MS-DOS and Windows are trademarks of Microsoft Incorporated. IBM, IBM PC, IBM PC/XT, IBM
PC AT and PC-DOS are trademarks of International Business Machines Corporation. LabVIEW is a registered
trademark of National Instruments Inc.

Changes are periodically made to the information herein; these changes will be incorporated into new editions of the
publication. Gage Applied Technologies, Inc. may make improvements and/or changes in the products and/or
programs described in this publication at any time.

Copyright © 2000 Gage Applied Technologies, Inc. All Rights Reserved, including those to reproduce this
publication or parts thereof in any form without permission in writing from Gage Applied Technologies, Inc.

The installation program used to install the CompuGen SDKs for Windows, InstallShield, is licensed software
provided by InstallShield Software Corp., 900 National Parkway, Ste. 125, Schaumburg, IL. InstallShield is
Copyright © 2000 by InstallShield Software Corp., which reserves all copyright protection worldwide. InstallShield is
provided to you for the exclusive purpose of installing the CompuGen SDKs for Windows. Gage Applied
Technologies, Inc. is exclusively responsible for the support of the CompuGen SDKs for Windows, including support
during the installation phase. In no event will InstallShield Software Corp. be able to provide any technical support
for the CompuGen SDKs for Windows.

The installation program used to install the CompuGen SDKs for DOS, INSTALL, is licensed software provided by
Knowledge Dynamics Corp., P.O. Box 1558, Canyon Lake, Texas 78130-1558 (USA). INSTALL is Copyright ©
1987-1998 by Knowledge Dynamics Corp., which reserves all copyright protection worldwide. INSTALL is provided
to you for the exclusive purpose of installing the CompuGen SDKs for DOS. Gage Applied Technologies, Inc. is
exclusively responsible for the support of the CompuGen SDKs for DOS, including support during the installation
phase. In no event will Knowledge Dynamics Corp. be able to provide any technical support for the CompuGen
SDKs for DOS.

Please complete the following section and keep it handy when calling Gage for technical support:

Owned by: ___________________________
Serial Number: ___________________________
Purchase Date: ___________________________
Purchased From: ___________________________
You must also have the following information when you call:
· Brand name and type of computer
· Processor and bus speed
· Total memory size
· Contents of AUTOEXEC.BAT and CONFIG.SYS files
· Information on all other hardware in the computer

How to reach Gage Applied Technologies, Inc. for Product Support
Toll-free phone: (800) 567-GAGE
Toll-free fax: (800) 780-8411

To reach Gage from outside North America
Tel: (514) 633-7447
Fax: (514) 633-0770
E-mail: prodinfo@gage-applied.com
Website: http://www.gage-applied.com

LDM \MANUALS\ SDK_DRIVERS\ COMPUGEN\ 0009\ CGDR0009.DOC

Gage Applied Technologies, Inc. 3

Table of Contents

Preface ... 6

Introduction to the CompuGen Software Development Kits (SDKs) 7

Configuring your CompuGen Card.. 8

Configuration under Windows 95/98 and Windows NT..8
CompuGen 1100 ...8
CompuGen T30 ...8

Configuration under DOS ..8

Memory Organization.. 9

Memory Architecture ...9
Interface for the ISA Bus ...9

Memory Organization from a Programmer’s Point of View 10

Accessing the Memory ..10

Important Definitions .. 12

Application Development ... 19

Initialization ...19
Board Setup ..20
Filling the Buffer ..22
Generating the Data..24
Output Frequency ...24

CompuGen 1100 ...24
CompuGen T30 ...25

Sample Programs.. 29

CompuGen SDK Basics: C..30
The Sample Program CG_OUT: C for Windows..30

Data Structures..30
Function Prototypes...31

CompuGen SDK Basics: Visual BASIC...33

CompuGen SDK User’s Guide 4

The Sample Program CG_OUT: Visual BASIC ...33
Data Structures..33
Function Prototypes...35

Global Routines... 36

Global Routines: Variable Definitions for Examples...36
ggen_abort..37
ggen_driver_initialize...38
ggen_dump_data ..41
ggen_ext_clock_ctrl_50ohm_on..42
ggen_ext_trig_ctrl_50ohm_on ...43
ggen_force_pattern ...44
ggen_gate_lc_ctrl_50ohm_on ...45
ggen_generate_mode ...46
ggen_get_boards_found ...48
ggen_get_config_filename ..49
ggen_get_driver_info...50
ggen_get_error_code..52
ggen_load_vram_from_buffer ...54
ggen_memory_test ...56
ggen_output_control..57
ggen_pad_value..59
ggen_read_config_file ...61
ggen_select_board..63
ggen_set_clock_level ..64
ggen_set_filter_on...65
ggen_set_independent_operation ...66
ggen_set_outer_loop_counter...67
ggen_set_records ...68
ggen_set_sync_out ...70
ggen_single_shot ..71
ggen_software_clock_pulse ..72
ggen_software_trigger...73
ggen_trigger_control ...74

Gage Applied Technologies, Inc. 5

Quick Reference: Sample Programs Included with the CompuGen SDKs 76

Glossary... 78

Technical Support ... 80

CompuGen SDK User’s Guide 6

Preface

This manual is designed to describe the routines included in the CompuGen 1100 and CompuGen T30
Software Development Kits (SDKs) for the Windows NT, Windows 98, Windows 95 and DOS
environments.

It is assumed that the programmer is familiar with the concepts of Dynamic Link Libraries, Windows
programming and the programming language in use. No description is included for these topics. If the
programmer is not comfortable with any one of these topics, it is strongly recommended that a relevant
reference manual be referred to before starting.

The SDK supports multiple CompuGen boards; however, from the programmer’s point of view, only one
board is accessible at any given time. The initialization routine reads a specially formatted array to
determine where the user has installed the CompuGen cards and then tries to initialize each board,
determine that it is indeed present and the then tests and sizes the memory on each board found.
Another routine will read a binary disk file and initialize the special array, or the user can create the array
with the format described in the initialization routine and pass it to the initialization routine. A routine is
provided to select the desired active board and then all subsequent operations are applied to the active
board, from data generation to configuration set-up.

The routine descriptions, listed alphabetically, describe the syntax. Also listed in the description will be a
set of named constants that can be used with each routine. Every effort to use the name and not the
equivalent numeric value should be made, as the numbers represented by the constants are subject to
change, but the names of the constants are not.

The CompuGen SDK for DOS is a collection of C files that allow all of the DLL calls available in Windows
NT and Windows 95/98 environments. Therefore any reference to a DLL call is still applicable in the DOS
environment (see Important Definitions).

Gage Applied Technologies, Inc. 7

Introduction to the
CompuGen Software Development Kits (SDKs)

CompuGen SDKs for Win NT

Windows NT is a classic operating system which traps any accesses made to system memory or I/O. An
SDK has been written which allows the same calls to be made to the NT drivers as programmers have
been used to with Windows 95/98. All compilers which can make calls to a Windows NT DLL are
supported. These include Visual BASIC for Windows, Visual C++, Borland C++, etc.

CompuGen SDKs for Win 95/98

All Windows-based compilers use Gage's CompuGen DLL, which is based on the same source code as
the SDK for DOS. A DLL is necessary to allow Windows to talk to a CompuGen card without making any
direct memory accesses. The SDK for Win 95/98 supports CompuGen cards in single-card or Multi-Card
Master/Slave configurations. All compilers which can make calls to a Windows 95/98 DLL are supported.
These include Visual BASIC for Windows, Visual C++, Borland C++, etc.

CompuGen SDKs for DOS

CompuGen cards are supported by a high-performance Software Development Kit for DOS. This SDK
consists of source code C drivers compatible with Microsoft C, Borland C and Watcom C. This SDK
comprises subroutines which allow the programmer to initialize the hardware, set up all the relevant
parameters, start a signal generation sequence, and transfer data from PC memory to on-board memory.
This SDK is the most efficient way of programming Gage CompuGen cards.

CompuGen SDK User’s Guide 8

Configuring your CompuGen Card

Now that you have fully installed CompuGen SDK for Win 95/98, Win NT or DOS, you should configure
your CompuGen board(s) and test your SDK installation.

Configuration under Windows 95/98 and Windows NT

CompuGen 1100
To configure your CompuGen 1100 card under Windows, you should run CGWin.exe. CGWin is
provided on separate installation disks. CGWin will create the configuration file GAGE_GEN.INC,
which holds the I/O address and memory segment information for each CompuGen board in the
system. The file should always be in your Windows directory (usually C:\WINDOWS). For details on
installing and running CGWin, please refer to your CompuGen for Windows Start-up Guide.

CompuGen T30
To configure your CompuGen T30 card under Windows, you should run CGT30.exe. CGT30 is
provided on separate installation disks. CGT30.exe will create the configuration file
GAGE_GEN.INC, which holds the I/O address and memory segment information for each CompuGen
board in the system. The file should always be in your Windows directory (usually C:\WINDOWS).
For details on installing and running CGT30, please refer to your CGT30 Software Start-up Guide.

Configuration under DOS

To configure your CompuGen card under DOS, you should run CGINST.exe. CGINST is provided
with the CompuGen SDK for DOS and is installed in the directory you chose during setup
(C:\Gage\GDrivers by default). CGINST will create the configuration file GAGE_GEN.INC, which
holds the I/O address and memory segment information for each CompuGen board in the system.
Under DOS, GAGE_GEN.INC should go in the same directory as your application executable.

Gage Applied Technologies, Inc. 9

Memory Organization

Memory Architecture

The D/A speeds at which the CompuGen boards generate signals are too fast for the
computer’s ISA bus to handle (the maximum transfer rate for the ISA bus is approximately 2
Mbytes/s). As such, the CompuGen boards have high-speed on-board memory to store the
digital data from the computer to generate waveforms/patterns.

Interface for the ISA Bus

In order to allow optimum data transfer rates from the PC memory or extended memory to the
CompuGen memory, the on-board memory is mapped within the memory map of the 80x86
processor, between 640K and 1M (factory default is E000H - E1FFH for the
CompuGen boards).

The CompuGen 1100 takes only 4 kilobytes of memory space between 640K and 1M, while the
CompuGen T30 takes only 8 kilobytes of memory space in this same region. This memory
address is configurable by writing to the on-board segment register, i.e. it is configured by
software, not by DIP switches, etc. This small memory window and software configuration mean
that there is very little chance of memory conflicts in any PC.

The CompuGen has memory depths much greater than just 4 KB or 8 KB. Therefore, the on-
board memory is addressed in a segmented manner and is divided into 4 KB blocks.

ON-BOARD MEMORY ADDRESS BLOCK NUMBER
0 to 4095 0
4096 to 8191 1
8192 to 12287 2
12288 to 16383 3
... ...

Using the above method, any byte of on-board memory can be addressed using the BLOCK
NUMBER and an OFFSET.

CompuGen SDK User’s Guide 10

Memory Organization from a
Programmer’s Point of View

This section describes the memory management scheme for the CompuGen board and is
provided for information purposes only. The implementation details are performed by the driver.
Application programs do not have to handle these details.

The CompuGen memory is too large to fit into the memory map of the PC below the one
megabyte assigned to add-in adapters on the ISA bus. Although the area above one megabyte
could be used, only 15 megabytes of memory space is available and the memory can only be
accessed via protected mode programs.

To simplify the access to the generation memory, a “paged” scheme was created. To avoid
confusion with the typical PC/Intel terminology (that a page is 4 kilobytes of memory which is
used when a paging memory mechanism is enabled inside the x86 CPU while in protected
mode), Gage refers to these pages as “blocks.”

Since the available memory is considerably larger than our block size, all of the onboard
memory is not available to the programmer at one time. Rather, the memory is accessed via a
movable block pointer (actually a register in the I/O map of the CompuGen card) that points to
an area that is 4 kilobytes long.

The full memory space of the card is broken into an integer number of these 4 kilobyte blocks.
The samples are organized as 16-bit words within each block. The block address pointer is then
moved to the next block and data can be moved into the next section of memory.

This process is repeated until all of the memory that will contain the signal to be generated has
been updated.

Accessing the Memory

The data is organized as 16 bit samples. As such the memory is accessed on even addresses
or, in other words, on word boundaries.

Memory Address

Sample0 0
Sample1 2
Sample2 4
Sample3 8

.. ..

The start address must be specified using the appropriate I/O mapped register. Similarly, the
end address must also be specified using an I/O mapped register for this purpose. The pattern
loaded into memory can then output starting from the start address continuing on to the end
address. This pattern may be output once (one shot mode), any preset number of times
specified in the appropriate register (looping mode), or continuously.

Gage Applied Technologies, Inc. 11

Pattern Modes for CompuGen 1100

One Shot Mode Looping Mode Continuous Mode

Pattern Modes for CompuGen T30

���������	�
�

���������������

�������	�
�

��������������� ��������������� ���������������

������ ������ ������

����������	�
�

��������������� ��������������� ��������������� ���������������

CompuGen SDK User’s Guide 12

Important Definitions

The following type definitions are used in the driver to simplify the code and reduce confusion. These
definitions are used both in this manual and in the sample programs for all platforms provided on the
release diskettes. Note that the terms “driver” and “DLL” are used interchangeably in this section.

* Memory Type definitions *

typedef unsigned char uInt8;
typedef unsigned short uInt16;
typedef unsigned long uInt32;
typedef signed char int8;
typedef signed short int16;
typedef signed long int32;
typedef char far * LPSTR;

If a routine fails, a global error function is available that describes the error which occurred and the board
that caused the error. This function, called ggen_get_error_code, returns a value which is encoded with
the high byte containing the board in error and the low byte set equal to the defined error constant.
These constants are listed below.

* Error Type definitions *

Constants value
GGEN_NO_ERROR 0x00
GGEN_NO_SUCH_MODE 0x01
GGEN_NO_SUCH_SAMPLE_RATE 0x02
GGEN_INVALID_SAMPLE_RATE 0x03
GGEN_NO_SUCH_BOARD 0x04
GGEN_NO_SUCH_GAIN 0x05
GGEN_NO_SUCH_TRIG_SLOPE 0x06
GGEN_NO_SUCH_TRIG_SOURCE 0x07
GGEN_LOAD_INVALID_CHANNEL 0x08
GGEN_LOAD_INVALID_LENGTH 0x09
GGEN_NO_PATTERN_LOADED 0x0A
GGEN_NO_SUCH_SYNC_OUT 0x0B
GGEN_INVALID_CLK_SOURCE 0x0C
GGEN_NO_SUCH_TRIG_RANGE 0x0D
GGEN_NO_SUCH_FILTER 0x0E
GGEN_MISC_ERROR 0xff

Gage Applied Technologies, Inc. 13

If the DLL detects a board during initialization then one of the following "ORable" constants is set in the
ggen_board_location status position. The board type definitions are:

* CompuGen board type *

Constants value
GGEN_ASSUME_NOTHING 0x0000
GGEN_ASSUME_CG1100 0x0400
GGEN_ASSUME_CGT30 0x1000
GGEN_ASSUME_ALL_BOARDS (GGEN_ASSUME_CGT30 | GGEN_ASSUME_CGT30)

The GGEN_ASSUME_ALL_BOARDS constant is included to provide a quick means to determine if any
CompuGen hardware was encountered during initialization.

**
* CompuGen operation mode constants. *
**
Constants value
GGEN_12BIT_MODE 2 for CompuGen 1100
GGEN_16BIT_MODE 4 for CompuGen T30

* CompuGen trigger slope values. *

Constants value
GGEN_POSITIVE 0
GGEN_NEGATIVE 1

* CompuGen trigger source values. *

Constants value
GGEN_EXTERNAL 0
GGEN_SOFTWARE 1

CompuGen SDK User’s Guide 14

* CompuGen Rate Table. *

Constants value
GGEN_RATE_1 1
GGEN_RATE_2 2
GGEN_RATE_5 5
GGEN_RATE_10 10
GGEN_RATE_20 20
GGEN_RATE_50 50
GGEN_RATE_100 100
GGEN_RATE_200 200
GGEN_RATE_500 500
GGEN_RATE_40 40 Only used with GGEN_MHZ
GGEN_RATE_80 80 Only used with GGEN_MHZ in CG1100 system

* CompuGen sample rate multiplier values. *

Constants value
GGEN_HZ 1
GGEN_KHZ 2
GGEN_MHZ 3
GGEN_GHZ 4

* CompuGen clock values. *

Constants value
GGEN_EXTERNAL_CLOCK 5
GGEN_SOFTWARE_CLOCK 6

* CompuGen filter. *

Constants value
GGEN_NO_FILTER 0
GGEN_FILTER_20MHZ 1
GGEN_FILTER_5MHZ 3 Only for CG1100

Gage Applied Technologies, Inc. 15

Since the C language does not have true Boolean types and constants, in the Pascal sense of the term,
two constants have been provided for this purpose to synthesize the Boolean meanings.

* Boolean constants. *

Constants value
TRUE 1 A true value.
FALSE 0 A false value.

* CompuGen gain values. *

Constants value
GGEN_TIMES_5 1 ± 5 volt range
GGEN_TIMES_2 2 ± 2 volt range
GGEN_TIMES_1 3 ± 1 volt range
GGEN_TIMES_0_POINT_5 4 ± 500 mVolt range
GGEN_TIMES_0_POINT_2 5 ± 200 mVolt range
GGEN_TIMES_0_POINT_1 6 ± 100 mVolt range

The ggen_driver_initialization routine uses an array called ggen_board_location to pass the desired
locations for the CompuGen hardware to the DLL code. The easiest method of setting up this array is to
call the ggen_read_config_file routine that uses the same GAGE_GEN.INC file. The
ggen_board_location array can also be initialized by calling the ggen_set_records routine. See the
description for this routine for an example explaining the initialization of the ggen_board_location array.
This array is declared (in C) as:

uInt16 ggen_board_location[GGEN_B_L_BUFFER_SIZE];

The first segment and I/O index locations are:

ggen_board_location[0]; memory segment for board 1
ggen_board_location[1]; I/O address for board 1
ggen_board_location[2]; memory segment for board 2
ggen_board_location[3]; I/O address for board 2
ggen_board_location[4]; memory segment for board 3
ggen_board_location[5]; I/O address for board 3
etc.

Currently, a maximum of 16 CompuGen boards can be used in one system.

CompuGen SDK User’s Guide 16

When the ggen_driver_initialize routine encounters an error during initialization, it returns the error
codes encountered via the ggen_board_location array. The error status for the first board is:

ggen_board_location[GGEN_B_L_STATUS_START];

where GGEN_B_L_STATUS_START is currently equal to 32.

The value returned can be one or more of the following constants. Note that these constants are
individual bits and can be "ORed" together to form a mask. The CompuGen definitions for
ggen_board_location status errors are:

GGEN_BAD_LSB_SEGMENT 0x0001 bad least significant bit segment
GGEN_BAD_MSB_SEGMENT 0x0002 bad most significant bit segment
GGEN_BAD_LSB_INDEX 0x0004 bad least significant bit index
GGEN_BAD_MSB_INDEX 0x0008 bad most significant bit index
GGEN_DETECT_FAILED 0x0010
GGEN_MEMORY_FAILED 0x0020
GGEN_BAD_MEMORY_SIZE 0x0040

The driver is normally instructed to check the encountered CompuGen hardware for the size of memory
installed. The method of operation can be overridden for special purposes. The
GGEN_MEMORY_SIZE_TEST (0) constant is available to tell the driver to check the memory in the call
to ggen_driver_initialize. If a non-zero value is used, the driver will assume that the value is the size of
the installed CompuGen memory and will not perform a memory test.

An important structure, defined in GGEN_DRV.H, is ggen_driver_info_type. This structure is used to
obtain information about the currently selected board by using the ggen_get_driver_info routine. The
ggen_driver_info routine is explained more fully in the section explaining API routines. Below are the
fields of the ggen_driver_info_type structure.

uInt16 index base I/O port index of currently selected CompuGen, used to

transfer data to the CompuGen card. The value is typically read
from the configuration file GAGE_GGEN.INC. The CompuGen
boards use 8 I/O ports starting from this address.

uInt16 segment absolute address of memory segment, typically read from

GAGE_GEN.INC.

uInt16 selector selector to the memory segment.

uInt16 offset offset from the base memory segment used. For example, if the

memory segment used is 0xD200, the base segment is 0xD000
and the offset is 0x2000.

uInt8 far *memptr pointer to the segment:offset address of the start of CompuGen

RAM.

int16 mode mode of the currently selected board, GGEN_12BIT_MODE

(CG1100) or GGEN_16BIT_MODE (CGT30), set by
ggen_generate_mode routine.

Gage Applied Technologies, Inc. 17

int16 rate set by ggen_generate_mode routine.

int16 multiplier set by ggen_generate_mode routine. The constants are

GAGE_HZ, GAGE_KHZ, GAGE_MHZ, GAGE_GHZ,
GAGE_EXT_CLK and GAGE_SW_CLK.

int16 oneshot flag the tells whether the CompuGen board is in one-shot mode

or not.

int32 max_memory memory size of CompuGen board (in samples).

int16 board_type numeric constant representing the board type as defined in the

GGEN_DRV.H file.

int16 o_range value being used for the output range One of the following

predefined constants defined in GGEN_DRV.H file should be
used with the ggen_output_control routine to set this
parameter:

GGEN_TIMES_5, GGEN_TIMES_2, GGEM_TIMES_1,
GGEN_TIMES_0_POINT_5, GGEN_0_TIMES_2 or
GGEN_TIMES_0_POINT_1.

 These only have an effect on a CompuGen 1100. The output

range for a CompuGen T30 is TTL.

int16 o_filter value being used for the output filter on a CompuGen T30. One

of the following predefined constants should be used with the
ggen_output_control routine to set this parameter:

 GGEN_NO_FILTER, GGEN_FILTER_20MHZ or

GGEN_FILTER_5MHZ.

int16 t_source value being used for the trigger source. One of the following

predefined constants should be used with the
ggen_trigger_control routine to set this parameter:

 GGEN_EXTERNAL or GGEN_SOFTWARE.

int16 t_slope value being used for the trigger slope. One of the following

predefined constants should be used with the
ggen_trigger_control routine to set this parameter:

 GGEN_POSITIVE or GGEN_NEGATIVE.

int16 t_range value being used for the trigger range. This is set with the

ggen_trigger_control routine. The predefined constant
GGEN_TIMES_5 can be used to set the ±5 volt rage.

CompuGen SDK User’s Guide 18

int16 t_level value being used for the trigger level. The routine
ggen_trigger_control is used to set this value. The value
ranges from 0 to 255, where 0 is the most negative voltage in the
trigger range and 255 the most positive. This value has no effect
if the trigger source is software, or on a CompuGen T30 (which
only has a TTL trigger range)

int16 ext_clk_50ohm flag which tells if the external clock has been set to 50 ohm

impedance or not. A non-zero value means that it has. The
driver routine ggen_ext_clock_ctrl_50ohm_on should be used
to set this flag.

int16 ext_trig_50ohm flag which tells if the external trigger input has been set to 50

ohm impedance or not. A non-zero value means it has. The
driver routine ggen_ext_trig_ctrl_50ohm_on should be used to
set this flag.

int16 gate_lc_50ohm flag which tells whether or not the gate input has been set to 50

ohm impedance. A non-zero value means it has. The driver
routine ggen_gate_lc_ctrl_50ohm_on should be used to set
this flag.

int16 inter_ctrl_50ohm flag which tells whether or not the CompuGen board is using 50

ohm termination internally. A non-zero value means it has. The
driver routine ggen_internal_ctrl_50ohm_on should be used to
set this flag. Note: most application programs should have no
need to change this flag from the default.

Gage Applied Technologies, Inc. 19

Application Development

In this section, a typical CompuGen application will be described. The following description applies to
both the CompuGen 1100 and CompuGen T30 boards, as well as to all supported operating systems.
Any differences will be noted in the description.

The description is written using C, but the same concepts apply regardless of the programming language
used. The code fragments used are modified versions of the Windows sample program, CG_OUT, which
is supplied on the Sample Source Code/SDK disk(s).

Initialization

Before the CompuGen hardware can be used, both it and the drivers must be initialized. The following
code fragment can be used to initialize the hardware.

char board_loc_file[260]; //path of config file
uInt16 ggen_board_location[64];
int initialize()
{
 int ret = 0;

 //Determine the complete path of the configuration file GAGE_GEN.INC
 ggen_get_config_filename(board_loc_file);

 //Reads the file and stores the data in the ggen_board_location array
 if ((ret = ggen_read_config_file ((board_loc_file), (uInt16 *)(ggen_board_location))) < 0)
 return -1;
 if (!ggen_driver_initialize((uInt16 *)(ggen_board_location),
 GGEN_MEMORY_SIZE_TEST))
 return -1;
 return 0;
}

The ggen_get_config_filename is used to read the configuration file, GAGE_GEN.INC, which holds the
I/O address and memory segment information for each CompuGen board in the system. The
configuration file can be created using the CGWIN.EXE (for CG1100 under Windows), CGT30.EXE (for
CGT30 under Windows or the CGINST.EXE application (for both CG1100 and CGT30 under DOS)
provided with the SDK.

In DOS, GAGE_GEN.INC should go in the same directory as your executable. Under Windows 95/98 or
Windows NT, the file should go in the Windows directory. When the function returns, the board_loc_file
parameter will hold the full path (including the filename) to GAGE_GEN.INC. In DOS, this will be the
current working directory. In Windows 95 or Windows NT, this will be the Windows directory.

CompuGen SDK User’s Guide 20

The ggen_read_config_file routine is used to read the configuration file and put the information into an
array that is used by ggen_driver_initialize. It uses the location returned by
ggen_get_config_filename to find the configuration file. Alternatively, the path can be used directly as
the first parameter to the routine. This is useful if the GAGE_GEN.INC file is kept somewhere other than
the default location. You can also fill the array passed to ggen_driver_initialize directly with the
ggen_set_records routine. The array is filled up with the memory segment and I/O address for each
board filling up the first half of the array. Unused portions are filled with zeros. The second half of the
array is used to return status codes and board types upon return from the initialization routine.

The CompuGen hardware and driver are initialized by calling ggen_driver_initialize. The second
parameter is a predefined constant (whose value is 0) that tells the routine to determine the memory size
of the board(s). Each memory segment and I/O address pair found in the first parameter is examined to
see if a CompuGen board (either a CG1100 or CGT30) is found there. If it is, a structure in the driver is
created to represent it.

The return value from ggen_driver_initialize is the number of CompuGen boards found and successfully
initialized. If a negative number is returned, not all the memory segment and I/O address pairs passed to
the routine had CompuGen hardware that could be found. The negative number represents the number
of boards that could not be detected and initialized.

Multiple boards in a Master/Slave configuration are automatically detected. If the boards are set up in a
Multiple/Independent configuration (that is, not using a common clock or trigger),
ggen_set_independent_operation should be called right after the boards are initialized to tell the drivers
to use Multiple/Independent mode.

Initialization only has to be performed once. If not all of the boards are found, the usual cause of the error
is a memory or I/O address conflict. See your CompuGen Hardware Manual for details on resolving a
memory or I/O conflict.

Board Setup

Once the drivers are initialized, the hardware must be told what the generation settings are. These
settings are the mode, sample rate, output range, trigger source, etc. The following code fragment shows
how to do this:

ggen_generate_mode(struc->cgi_mode, struc->cgi_clock_rate, struc->cgi_clock_mult);
ggen_output_control(struc->cgi_gain, struc->cgi_filter);
ggen_trigger_control(struc->cgi_trigger_source, struc->cgi_slope, struc->cgi_gain, struc-
>cgi_trigger_level);
ggen_set_outer_loop_counter (0);

In the above code, struc is an application-defined structure for grouping the variables used to set the
hardware. It can be replaced by constants or other variables. The order of the calls in the setup is
important.

Gage Applied Technologies, Inc. 21

The routine ggen_generate_mode is used to send the mode and sample rate to the hardware. The
mode can be either GGEN_12BIT_MODE (used for the CG1100) or GGEN_16BIT_MODE (used for the
CGT30). The sample rate can be any valid sample rate broken up into rate and multiplier. The valid
values for the rate are:

 Constant Value

 GGEN_RATE_1 1
 GGEN_RATE_2 2
 GGEN_RATE_5 5
 GGEN_RATE_10 10
 GGEN_RATE_20 20
 GGEN_RATE_40 40 Only valid with GAGE_MHZ
 GGEN_RATE_50 50
 GGEN_RATE_80 80 Only valid with GAGE_MHZ and the CG1100
 GGEN_RATE_100 100
 GGEN_RATE_200 200
 GGEN_RATE_500 500

The valid multiplier values are:

 Constant Value

 GGEN_HZ 1
 GGEN_KHZ 2
 GGEN_MHZ 3
 GGEN_EXTERNAL_CLOCK 5

The rate and multiplier values are combined to form the sample rate. All rates are valid for both the
CG1100 and the CGT30, except for 80 MHz, which is only valid on the CG1100. If an external clock is
being used, then both the rate and multiplier should be set to GGEN_EXTERNAL_CLOCK.

The ggen_output_control routine is used to configure the output range and output filter of the
CompuGen hardware. The available output ranges are:

 Constant Value

 GGEN_TIMES_5 1 ±5 volts
 GGEN_TIMES_2 2 ±2 volts
 GGEN_TIMES_1 3 ±1 volt
 GGEN_TIMES_0_POINT_5 4 ±500 millivolts
 GGEN_TIMES_0_POINT_2 5 ±200 millivolts
 GGEN_TIMES_0_POINT_1 6 ±100 millivolts

The CGT30 only uses a TTL output (0 to 5 volts) regardless of what is used in the call to
ggen_output_control.

On the CG1100, the above output ranges all assume a 50 ohm load on the output. If a 50 ohm load is
not there, the output range is doubled.

CompuGen SDK User’s Guide 22

The filter parameter is used to smooth out the signal above certain frequencies. The filter parameter
applies only to the CG1100, not to the CGT30. Valid values are:

 Constant Value

 GGEN_NO_FILTER 0

GGEN_FILTER_20MHZ 1
 GGEN_FILTER_5MHZ 3

The gage_trigger_control routine sets up the trigger parameters of the hardware. The source
parameter can be either GGEN_EXTERAL (0) or GGEN_SOFTWARE (1). If the source is set to external,
data generation will not be started until an external trigger event is received. If the trigger source is
software, data generation will begin when a software trigger is issued. This is done by calling
ggen_software_trigger. The other parameters only have an effect if the trigger source is external.

The trigger slope can be either GGEN_POSITIVE (0) or GGEN_NEGATIVE (1).

The trigger gain can be GGEN_TIMES_5 (1) for the ±5 volt range for the CG1100. The CGT30 only has
a TTL external trigger.

The trigger level is a uInt8 value between 0 and 255, where 0 represents the lowest value in the trigger
range and 255 the highest. The formula to convert the trigger level to a voltage is;

 ((level - 128.0) / 128.0) * trigger range (where trigger range is 5 for the ±5 volt range)

The differential between the actual trigger signal and the trigger level should not be too large. For
example, if the signal coming into the external trigger BNC was ±5 volts and the trigger level was set to 4
volts, the difference would between the minimum value of the external trigger signal and the level is nine
volts.

The trigger level on the CGT30 cannot be changed.

The ggen_set_outer_loop_counter routine is used to tell the CompuGen hardware how many times to
generate the pattern loaded into it. A zero value means to generate in continuous mode. In this mode
the pattern is continuously generated until it is aborted. A positive, non-zero parameter will cause the
pattern to be generated that number of times. Data generation will then stop.

Filling the Buffer

The on-board memory is filled by calling the routine ggen_load_vram_from_buffer. This routine loads
the CompuGen memory with a user-supplied pattern. The following code fragment shows how to use this
routine:

ggen_load_vram_from_buffer (length, buffer, loop_number, end_flag);

where:

length the size of the buffer in 16 bit words. The length should be a multiple of 4. If it is not, the

driver will round the length down to the nearest multiple.

buffer a pointer to the user-supplied pattern.

Gage Applied Technologies, Inc. 23

loop_number how many times the pattern should be generated. This parameter is reserved for future
use and should be set to 1 for the current drivers.

end_flag a flag to tell the driver which is the last pattern to be loaded. This parameter is reserved

for future use and should be set to 1 for the current drivers.

The buffer should be filled with 16 bit values between 0 and 4095 when using a CG1100. The most
positive voltage in the current output range corresponds to 0 and the least positive voltage corresponds to
4095. For example, in the ±1 volt range, -1 volt is represented by 4095 and +1 volt is represented by 0.
The following code fragment can be used to fill the buffer with an application generated sine wave. This
buffer would then be passed to the ggen_load_vram_from_buffer routine.

void sinewave (uInt16 *buffer, int32 *length)
{
 int16 x, value, offset = 0, amplitude = 2048;
 double a, pi = 3.141592;

 for (x = 0 ; x < *length ; x++) {
 a = -(sin (2 * pi * ((double)(x) / (double)(*length))));
 value = (2048 - offset) + (int16)(a * amplitude);
 if (value > 4095)
 value = 4095;
 if (value < 0)
 value = 0;
 buffer[x] = value;

}
}

This routine creates a ±1 volt sine wave. Remember that the CG1100 drivers assume a 50 ohm load on
the output, so it may appear as a ±2 volt sine wave if there is not a 50 ohm load.

The CGT30 can be filled either with a buffer of 16 bit values or a buffer of 32 bit values. In either case,
the length parameter must be the number of 16 bit values in the buffer. If a buffer of 16 bit values is used,
each two consecutive 16 bit values are treated as the low-high halves of a 32 bit word. For example, a
counter pattern can be loaded as follows:

Value Binary (32 bits)

0 00000000000000000000000000000000
1 00000000000000000000000000000001
2 00000000000000000000000000000010
3 00000000000000000000000000000011
4 00000000000000000000000000000100
5 00000000000000000000000000000101
6 00000000000000000000000000000110
7 00000000000000000000000000000111

CompuGen SDK User’s Guide 24

In this case, the length parameter would be 16 (eight 32 bit values = sixteen 16 bit values).

Value Binary (16 bits)

0 0000000000000000
1 0000000000000000
2 0000000000000001
3 0000000000000000
4 0000000000000010
5 0000000000000000
6 0000000000000011
7 0000000000000000
8 0000000000000100
9 0000000000000000
10 0000000000000101
11 0000000000000000
12 0000000000000110
13 0000000000000000
14 0000000000000111
15 0000000000000000

In this case, the buffer is filled with 16 bit values and the length is also 16.

Generating the Data

Once the pattern has been loaded, the ggen_dump_data routine should be called to arm the board.
After the board has been armed, the data will be generated when a trigger event is received. The
following code fragment shows this:

ggen_dump_data ();
if (struc->cgi_trigger_source == GGEN_SOFTWARE)
 ggen_software_trigger ();

The ggen_software_trigger routine is used to immediately generate a software trigger.

In non-continuous mode, ggen_dump_data does not have to be called to generate data again if the
pattern has not been changed.

Output Frequency

CompuGen 1100
The output frequency is determined by the sample rate and the number of samples being generated. For
example, if one cycle of a sine wave is created using 1000 samples and generated at a sample rate of 40
MHz, the output frequency would be:

sample rate / number of samples = output frequency
40,000,000 / 1000 = 40,000 = 40 kHz

If the same sine wave was created with 100 points, the output frequency would be:

 40,000,000 / 100 = 400,000 = 400 kHz

Gage Applied Technologies, Inc. 25

CompuGen T30
Either a low (0) or high (1) is generated whenever a clock occurs. If a counter is being generated at 40
MHz, the first few bits of the pattern would look like this:

Clock

Bit 0

Bit 1

Bit 2

Bit 3

CompuGen SDK User’s Guide 26

ggen_get_config_filename
ggen_read_config_filename

ggen_driver_initialize

Program Execution

ggen_generate_mode
ggen_output_control
ggen_trigger_control

ggen_set_outer_loop_number

ggen_load_vram_from_buffer Exit Program

A

C

D

E

F

T

Gage Applied Technologies, Inc. 27

ggen_dump_data

IF
(trigger source = = ggen_software)

ggen_software_trigger

A

Generate same Pattern

B

T

F

T

F

CompuGen SDK User’s Guide 28

ggen_abort

Change hardware
settings

B

C

D

Do something else

Generate different patternE

F

T

F

T

T

F

Gage Applied Technologies, Inc. 29

Sample Programs

This section describes two of the sample programs available in the CompuGen SDK for Windows 95/98,
one for C and one for Visual BASIC. Note that the availability and number of sample programs may
change after the publication of this manual. The sample programs are meant to show how to program the
CompuGen 1100 and CompuGen T30 using the provided API routines. These API routines are used the
same way for both boards and under all platforms (Windows 95/98, Windows NT and DOS) unless
otherwise stated in this manual.

CompuGen SDK User’s Guide 30

CompuGen SDK Basics: C

The simplest way to use the API routines in your own C programs is to link your program with the
provided CGWINDLL.LIB. This will give your application program access to all the CompuGen DLL
functions. You can do this by including CGWINDLL.LIB in your project file.

Note that the CGWINDLL.DLL and CGWINDLL.LIB files have been compiled with Microsoft Visual C++.
Because of this, the CGWINDLL.LIB may (depending on the version of the compiler you are using) be
incompatible with Borland C. To use the Borland C compiler with the DLL, you will need to recreate the
CGWINDLL.LIB file. This can be done using the IMPLIB.EXE tool that comes with your Borland C
compiler. The command line syntax is:

 implib cgwindll.lib cgwindll.dll

This will create a new CGWINDLL.LIB file that is compatible with Borland compilers.

The Sample Program CG_OUT: C for Windows

The sample program CG_OUT was created using the design tools that are bundled with the Microsoft
Visual C package. It features discrete and continuous data generation. Several routines and data
structures have been added to the sample program that will allow the programmer to get started quickly.

The program reads in a response file (the default name is DEFAULT.CGI) which contains the board
settings to use for data generation. The response file specifies a GageScope SIG file to read in and
generate. If no response file is found, or if there is no SIG file mentioned in the response file, a 100-
sample sine wave is generated. If no CGI file is found, default settings are used for the board
parameters. Otherwise, the settings in the CGI file are used. The CGI file should be mentioned on the
command line of the program, i.e. CG_OUT DEFAULT.CGI.

The program will work in the same way for either a CompuGen 1100 or a CompuGen T30.

Data Structures

The first data structure defines variables that are used to fill the CGI structure prior to setting the
hardware parameters. An entry for each of the relevant controls is present. The data structure is used by
the "Generate" routine, which sends the value of each parameter to the hardware.

All constants mentioned can be found in the file OFILES.H or GGEN_DRV.H.

Gage Applied Technologies, Inc. 31

The following is a description of the main structure used in the program. Valid values for each of the
parameter fields can be found in the description of the GGEN_DRIVER_INFO_TYPE structure elsewhere
in this manual.

STRUCTURE OF THE CGI FILE

typedef struct {

char cgi_filename[30]; The name of the GageScope SIG file to read and generate. If no
SIG file is found or specified, a 100-sample sine wave is
generated.

int16 cgi_mode; The operating mode to use. This should be
GGEN_12BIT_MODE for a CG1100 and GGEN_16BIT_MODE
for a CGT30.

int16 cgi_clock_mult; The sample rate multiplier to use. This value and the
cgi_clock_rate are used to form the sample rate.

int16 cgi_quietmode; Whether or not to show progress of program.
int16 cgi_loop_count; How many times to generate the pattern. A 0 means continuous

mode.
int16 cgi_trigger_source; The trigger source.
int16 cgi_trigger_level; The trigger level.
int16 cgi_clock_rate; The rate to use for the sample rate.
int16 cgi_filter; Which output filter to use.
int16 cgi_gain; Which output range to use.
int16 cgi_slope; The trigger slope.
int16 cgi_ext_clock; A flag to tell the program if external clock is being used or not.

}cgi;

Function Prototypes

The following functions have been written to help speed up the development process for the programmer
using the CompuGen SDK and the CompuGen series of high-speed data generation cards.

int initialize(int quietMode);

This routine performs all the necessary calls in the proper order to initialize the driver. Certain
modifications to this routine will be necessary if the programmer does not want the progression messages
displayed.

cgi *open_Fcgi(int quietMode, LPSTR lpszCmdLine);

This routine opens the CGI file mentioned in the command line and fills the structure that will be used to
set up the CompuGen hardware. If no CGI file is mentioned, the structure is filled with default values.

uInt16 *openSigFile(int quietMode, cgi *ret_struc, int32 *length);

This routine opens and reads the GageScope signal file (.SIG) mentioned in the CGI file. The data in the
signal file is read into a buffer, which is used by the generate routine.

int generate (cgi *ret_struc, uInt16 *file_buf, int32 *length);

This routine uses the "gendef" structure named "board," which was previously loaded with the desired
generation parameters, and generates the waveform. The sample program initializes these parameters

CompuGen SDK User’s Guide 32

statically; it is the programmer’s responsibility to perform the same task prior to generating data from the
CompuGen card. Note the order in which these routines are called, as the order is important for the
proper operation of the CompuGen hardware and for the CompuGen DLL driver to maintain correct
information as to the size of memory available, the various waveform parameters, etc.

void sinewave (uInt16 *buffer, int32 *length);

This routine generates a sine wave mathematically and scales it to the proper values for the CG1100.
The sine wave is stored in a buffer which is passed to the CompuGen via the
ggen_load_vram_from_buffer DLL call in the Generate routine.

Gage Applied Technologies, Inc. 33

CompuGen SDK Basics: Visual BASIC

This basic introduction to the CompuGen SDK shows how to include the DLL in your code and then how
to make use of these routines.

The simplest method of using the CompuGen SDK routines is to add the following DLL import code to a
separate global module in your program. For example:

Declare Sub ggen_dump_data Lib "ggwindll.dll" ()

These commands can also be found as part of the file GLOBAL.BAS in the included sample program.
Also, the file CGWINDLL.DLL should be located in your Windows directory (usually C:\WINDOWS) and
the runtime Visual BASIC DLL, VBRUNxxx.DLL, should be in your Windows\System directory (usually
C:\WINDOWS\SYSTEM).

When a CompuGen DLL routine is required, the name of the routine is used just as in a regular Visual
BASIC subroutine call.

The Sample Program CG_OUT: Visual BASIC

The Visual BASIC sample program CG_OUT was created using the design tools that are available in
Microsoft Visual BASIC 5.0. It features discrete and continuous data generation. Several routines and
data structures have been added to the sample program that will allow the programmer to get started
quickly.

Data Structures

The first data structure defines variables that are used prior to setting the hardware parameters. An entry
for each of the relevant controls is present. The data structure is used by the SetBoard routine, which
sends the value of each parameter to the hardware.

All constants mentioned can be found in the file GLOBAL.BAS.

Type gendef
 opmode As Integer Operating mode of the board.
 srindex As Integer Index to a sample rate table.
 output_range As Integer The output range to set.
 output_filter As Integer The output filter to set.
 generate_once As Integer One shot or continuous generation.
 t_source As Integer The trigger source to set.
 t_slope As Integer The trigger slope to set.
 t_level As Integer The trigger level to set.
 t_range As Integer The trigger range to set.
End Type

The sample rate table structure is not needed, but it is included in the file GLOBAL.BAS and initialized in
the Initialize subroutine as a convenience to the programmer.

CompuGen SDK User’s Guide 34

Type srtype
 rate As Integer Rate used for setting the CompuGen.
 mult As Integer Multiplier used for setting the CompuGen.
 flag As Integer Flag to indicate which board supports which sample rate.
 calc As Long Time between samples (in ns). Used in calculating the number of
 points.
 text As String Text associated with the current settings of the CompuGen.
End Type

Global srtable As srtype

Contents of the srtable data structure for the sample program.

index rate mult flag calc text

00 GEN_RATE_1 GGEN_HZ &H0003 1000000000 1 Hz
01 GGEN_RATE_2 GGEN_HZ &H0003 500000000 2 Hz
02 GEN_RATE_5 GGEN_HZ &H0003 200000000 5 Hz
03 GGEN_RATE_10 GGEN_HZ &H0003 100000000 10 Hz
04 GGEN_RATE_20 GGEN_HZ &H0003 50000000 20 Hz
05 GGEN_RATE_50 GGEN_HZ &H0003 20000000 50 Hz
06 GGEN_RATE_100 GGEN_HZ &H0003 10000000 100 Hz
07 GEN_RATE_200 GGEN_HZ &H0003 5000000 200 Hz
08 GGEN_RATE_500 GGEN_HZ &H0003 2000000 500 Hz
09 GGEN_RATE_1 GGEN_KHZ &H0003 1000000 1 kHz
10 GGEN_RATE_2 GGEN_KHZ &H0003 500000 2 kHz
11 GGEN_RATE_5 GGEN_KHZ &H0003 200000 5 kHz
12 GGEN_RATE_10 GGEN_KHZ &H0003 100000 10 kHz
13 GGEN_RATE_20 GGEN_KHZ &H0003 50000 20 kHz
14 GGEN_RATE_50 GGEN_KHZ &H0003 20000 50 kHz
15 GGEN_RATE_100 GGEN_KHZ &H0003 10000 100 kHz
16 GGEN_RATE_200 GGEN_KHZ &H0003 5000 200 kHz
17 GGEN_RATE_500 GGEN_KHZ &H0003 2000 500 kHz
18 GGEN_RATE_1 GGEN_MHZ &H0003 1000 1 MHz
19 GGEN_RATE_2 GGEN_MHZ &H0003 500 2 MHz
20 GGEN_RATE_5 GGEN_MHZ &H0003 200 5 MHz
21 GGEN_RATE_10 GGEN_MHZ &H0003 100 10 MHz
22 GGEN_RATE_20 GGEN_MHZ &H0003 50 20 MHz
23 GGEN_RATE_40 GGEN_MHZ &HC003 25 40 MHz

Gage Applied Technologies, Inc. 35

Function Prototypes

The following functions have been written to help speed up the development process for the programmer
using the CompuGen SDK and the CompuGen series of high-speed data generation cards.

Sub SetDefaultBoardLocation(ByVal seg As Integer, ByVal ind As Integer)

This routine is called if the DLL routine ggen_read_config_file returns false, indicating the board location
configuration file is corrupt or missing. A default segment and index are passed to this routine and the
global data structure ggen_board_location is updated prior to calling the DLL routine
ggen_driver_initialize. The routine also converts the two constants, defined in GLOBAL.BAS, passed to
it and returns the text equivalent for the type and memory size of the CompuGen board found.

function InitBoard () As Integer

This routine performs all the necessary calls in the proper order to initialize the driver. Some modification
to this routine will be necessary if the programmer does not want the progression messages displayed. As
written, the sample program will abort if no CompuGen board is found or if ggen_select_board fails. The
probable cause of this is an incorrect segment or index value in the configuration file. The problem can be
corrected by running the CGWin.exe or CGT30.exe utility. The routine also converts two constants,
defined in GLOBAL.BAS, representing the name and memory size of the CompuGen board into their text
equivalents.

Private Sub cmdGenerate_Click()

This routine uses the "CGI" structure, which was previously read from the text file and loaded with the
desired capture parameters, and generates the waveform. The sample program initializes these
parameters statically; it is the programmer’s responsibility to perform the same task prior to generating
data from the CompuGen card. Note the order in which these routines are called, as the order is
important for the proper operation of the CompuGen hardware and for the CompuGen DLL driver to
maintain correct information as to the size of memory available to each channel, the various waveform
parameters, etc.

Function Sinewave1100 () As Integer

This routine is an example of generating a waveform and storing it in a buffer. The contents of the buffer
are passed to the CompuGen via the subroutine AnalogGenerateStart.

CompuGen SDK User’s Guide 36

Global Routines

The following section provides an alphabetical listing of all of the Global Routines, complete with syntax,
remarks, return value, other routines and sample programs to consult for additional information, and
examples.

Global Routines: Variable Definitions for Examples

This section lists the definitions assumed to be present for the various examples listed with the
descriptions for the Global Routines.

 Global Const POINTS1 = 16383

 Global i As Integer
 Global expected As Integer
 Global boards As Integer
 Global driver_info As ggen_driver_info_type
 Global address As Integer
 Global analog As Integer
 Global digital As Integer
 Global a_buffer (POINTS1+1) As Integer
 Global ggen_board_location (GGEN_B_L_BUFFER_SIZE) As Integer
 Global ret As Integer
 Global tempstr As String

The following definitions are used for some of the examples which have their roots in the
GGDLLDEM.BAS program. The additional "types" are defined in the section above, Sample Programs.

Initialization of the board structure. The board structure is of type gendef.

 board.opmode = GGEN_DUAL_MODE
 board.srindex = 21
 board.output_range = GGEN_TIMES_1
 board.output_filter = 1 ' True
 board.generate_once = 0 ' False
 board.t_source = GGEN_SOFTWARE
 board.t_slope = GGEN_POSITIVE
 board.t_level = 128
 board.t_range = GGEN_TIMES_1

 board_type = GGEN_ASSUME_NOTHING
 board_memory = 0
 wave_length = 0
 Static wave_buffer (GGEN_DOUBLE_DEPTH) As Integer

Gage Applied Technologies, Inc. 37

ggen_abort

Syntax

C
#include <ggen_drv.h>
void ggen_abort (void);

Visual BASIC
sub ggen_abort ()

Remarks

ggen_abort is used to regain control of the CompuGen board, primarily in the event that a trigger event
never occurs. This routine forces the board to a non-busy state, thus allowing the board to be re-
configured, rearmed and/or the memory to be accessed. This routine is also used to stop data generation
at the end of a program or to enable a new pattern to be loaded and generated.

Once a pattern has been generated in continuous mode, it will continue until it has been aborted or the
computer is reset.

Return Value

None.

See also

ggen_busy

Examples

C
ggen_abort ();

Visual BASIC
ggen_abort

CompuGen SDK User’s Guide 38

ggen_driver_initialize

Syntax

C
#include <ggen_drv.h>
int16 ggen_driver_initialize (uInt16 far *records, uInt16 memory);

Visual BASIC
Function ggen_driver_initialize (records As Integer, ByVal memory As Integer) As Integer

Remarks

ggen_driver_initialize will fully configure each board found in the system. From then on a call to
ggen_select_board will be required to access any board .

The records parameter is assumed to be an uninitialized uInt16 array supplied by the application
program. This array must be GGEN_B_L_BUFFER_SIZE (48) bytes long. The format of the array is that
the first GGEN_B_L_STATUS_START (32) uInt16s are for the board segment and index values, each
pair occupies GGEN_B_L_ELEMENT_SIZE (2) uInt16s, for each of the possible
GGEN_B_L_MAX_CARDS (16) boards.

A status field is provided for each potential board location, which is GGEN_B_L_STATUS_SIZE (1)
uInt16s in length. The values for the status field are constants that correspond to bit positions in the
status field and must be masked to determine which errors occurred when initializing the board. The low
nibble is for problems with the segment and index.

CompuGen ggen_board_location (defined in GGEN_DRV.H file) array "pseudo structure"

array index: 0 1 2 3 ... 30 31 32 33 34 35 ... 46 47
meaning: S1 I1 S2 I2 ... S16 I16 E1 E2 E3 E4 ... E15 E16

where: Sx = segment for board x,
 Ix = index for board x,
 Ex = returned board type or error status for board x,

The possible error codes for the status fields are:

GGEN_BAD_LSB_SEGMENT (0x0001) means that the low order byte of the segment was not equal to
zero.

GGEN_BAD_MSB_SEGMENT (0x0002) is used when the segment is either less than A000 hex or
greater than DF00 hex (the valid area in the memory map reserved for slot resources is 0xA0000 to
0xDFFFF).

GGEN_BAD_LSB_INDEX (0x0004) is set when the least significant bit of the index is not zero.

Gage Applied Technologies, Inc. 39

GGEN_BAD_MSB_INDEX (0x0008) is used when the high order byte of the index is either equal to 00
hex or greater than 03 hex (the valid area in the I/O map reserved for slot resources is 0100 hex to 03ff
hex).

GGEN_DETECT_FAILED (0x0010) is set when no CompuGen board is detected at the specified I/O
address. The usual cause is either an I/O conflict or the wrong address being specified in the
GAGE_GEN.INC file.

GGEN_MEMORY_FAILED (0x0020) is set when a CompuGen board was detected but the memory test
fails. The usual cause is a memory conflict. This can often be resolved by booting clean or reserving the
memory segment you wish to use with a memory manager. For example, EMM386.EXE will often
reserve all memory between the top of DOS and 1 Megabyte for itself. Using the following line in your
config.sys file will prevent this from happening:

 DEVICE=C:\WIN95\EMM386.EXE NOEMS X=D000-D1FF

This tells the memory manager not to use expanded memory and not to touch the memory region 0xD000
to 0xD1FF. The example above assumes that you are in Windows 95 and that the GAGE_GEN.INC file
is set to use memory address 0xD000.

Once the board has been initialized, the board type can be found by calling ggen_driver_info and
reading the board_type field. Possible values for the board type are:

 GGEN_ASSUME_CG1100 0x0400
 GGEN_ASSUME_CGT30 0x1000

The memory parameter allows the memory self-test to be disabled by supplying the size of the memory
in kilobytes of the installed board(s). The constant GGEN_MEMORY_SIZE_TEST (0) will force the
memory test to be performed. Note that the memory size for all installed boards must be the same;
otherwise a conflict can occur and the data returned may be invalid for the boards with the incorrect
memory size assigned.

If a memory size is used instead, the driver will assume that the installed board has that amount of
memory. Specifying the wrong size can lead to improper results from the driver.

If an incorrect memory size is found, then the status field for the segment and index record in question will
have the GGEN_BAD_MEMORY_SIZE bit set. If the status is zero and the corresponding segment and
index record are non-zero, then this particular board was properly initialized. If, however, the status is
zero and the segment and index record are also zero, then the "board" is the premature end of the
records array. By default the first board found will be selected.

A local data structure in the DLL is created for each board. To allow access to this structure, the routine
ggen_get_driver_info has been implemented. This routine queries the DLL about information on the
current selected board. It is advised that this method be maintained for compatibility with future releases
of the CompuGen SDKs rather than using the internal DLL variables directly.

Return Value

The return value is the number of CompuGen boards found and initialized. If a negative number is
returned, then that number of boards was found in the GAGE_GEN.INC file but could not be initialized.
The routine ggen_get_error_code can then be called to determine why.

CompuGen SDK User’s Guide 40

See also

ggen_read_config_file, ggen_get_error_code, ggen_get_driver_info and ggen_select_board

Examples

C
ggen_driver_initialize ((uInt16 far *)ggen_board_location, GGEN_MEMORY_SIZE_TEST);

Visual BASIC
ggen_driver_initialize(ggen_board_location(0), ms)

Gage Applied Technologies, Inc. 41

ggen_dump_data

Syntax

C
#include <ggen_drv.h>
void ggen_dump_data (void);

Visual BASIC
Sub ggen_dump_data ()

Remarks

This routine operates on the current board only. Different boards are selected by calling the
ggen_select_board routine. It sets the CompuGen hardware to allow data generation as soon as a
trigger has been received. Note that this routine alone will not cause data to be generated—a trigger
event, either hardware or software, must occur before the data is generated. The routine must be called
for each CompuGen board in the system that is required to generate data.

Return Value

None.

See also

ggen_busy

Examples

C
ggen_dump_data ();

Visual BASIC
ggen_dump_data

CompuGen SDK User’s Guide 42

ggen_ext_clock_ctrl_50ohm_on

Note: This routine is for boards with the External Clock option only.

Syntax

C
#include <ggen_drv.h>
void ggen_ext_clock_ctrl_50ohm_on (int16 on);

Visual BASIC
Sub ggen_ext_clock_ctrl_50ohm_on (ByVal on As Integer)

Remarks

The ggen_ext_clock_ctrl_50ohm_on routine is used to tell the driver that the external clock will be 50
ohm AC terminated. Normally, the CompuGen expects a TTL level external clock. If the on parameter is
non-zero, the driver will assume that any external clock is 50 ohm terminated. If the parameter is 0, the
driver will assume that it is not 50 ohm terminated. The rate and multiplier must be set to External Clock
in the call to ggen_generate_mode for this routine to have any effect. This call must be made before the
call to ggen_generate_mode.

The default setting is 50 ohm termination is off.

Note that you must have the External Clock option for this routine to have any effect.

Return Value

None

See also

ggen_generate_mode

Examples

C
ggen_ext_clock_ctrl_50ohm_on (1);

Visual BASIC
ggen_ext_clock_ctrl_50_ohm_on (1)

Gage Applied Technologies, Inc. 43

ggen_ext_trig_ctrl_50ohm_on

Syntax

C
#include <ggen_drv.h>
void ggen_ext_trig_ctrl_50ohm_on (int16 on);

Visual BASIC
Sub ggen_ext_trig_ctrl_50ohm_on (ByVal on As Integer)

Remarks

The ggen_ext_trig_ctrl_50ohm_on routine is used to tell the driver that the external trigger will be 50
ohm terminated. If the on parameter is non-zero, the driver will assume that any external trigger is 50
ohm terminated. If the parameter is 0, the driver will assume that it is not 50 ohm terminated. The trigger
source must be set to external trigger in the call to ggen_trigger_control for this routine to have any
effect. This call must be made before the call to ggen_trigger_control.

The default is 50 ohm termination is off.

Return Value

None

See also

ggen_trigger_control

Examples

C
ggen_ext_trig_ctrl_50ohm_on (1);

Visual BASIC
ggen_ext_trig_ctrl_50_ohm_on (1)

CompuGen SDK User’s Guide 44

ggen_force_pattern

Syntax

C
#include <ggen_drv.h>
void ggen_force_pattern (int32 offset, void* buffer, uInt32 size);

Visual BASIC
Sub ggen_force_pattern (ByVal offset As Long, buffer As Integer, By Val length As Long)

Remarks

The ggen_force_pattern routine can access the on-board memory directly. It is used to modify a part of
a previously loaded pattern directly without the need to reload the pattern. It is useful when only a small
part of the pattern needs to be changed. The ggen_dump_data routine must be called in order to make
the change effective.

The offset parameter is the offset in bytes from the beginning of the on-board memory in which to put the
new pattern. The buffer parameter is a pointer to the new pattern used to modify the original pattern.
The size parameter is the size in bytes of the new pattern.

Return Value

None

See also

ggen_load_vram_from_buffer

Examples

C
ggen_force_pattern (200, pBuf, 16);

Visual BASIC
ggen_force_pattern (200, pBuf(0), 16)

Gage Applied Technologies, Inc. 45

ggen_gate_lc_ctrl_50ohm_on

Note: This routine is for boards with the Gated Generation option only.

Syntax

C
#include <ggen_drv.h>
void ggen_gate_lc_ctrl_50ohm_on (int16 on);

Visual BASIC
Sub ggen_gate_lc_ctrl_50ohm_on (ByVal on As Integer)

Remarks

The ggen_gate_lc_ctrl_50ohm_on routine is used to tell the driver that a gate signal will be 50 ohm
terminated. If the on parameter is non-zero, the driver will assume that any external gate is 50 ohm
terminated. If the parameter is 0, the driver will assume that it is not 50 ohm terminated.

The default setting is 50 ohm termination is off.

Note that you must have the Gated Generation option for this routine to have any effect. The Gated
Generation option allows the user to control the analog output by gating the clock that transfers data from
the memory to the DAC.

Return Value

None

See also

ggen_trigger_control

Examples

C
ggen_gate_lc_ctrl_50ohm_on (1);

Visual BASIC
ggen_gate_lc_ctrl_50_ohm_on (1)

CompuGen SDK User’s Guide 46

ggen_generate_mode

Syntax

C
#include <ggen_drv.h>
int16 ggen_generate_mode (int16 op_mode, int16 rate, int16 multiplier);

Visual BASIC
Function ggen_generate_mode (ByVal op_mode As Integer,
 ByVal s_rate As Integer,
 ByVal multiplier As Integer) As Integer

Remarks

This routine sets up the operating mode, rate and multiplier values for a CompuGen board.
The op_mode sets the operating mode for the CompuGen board. The value should be
GGEN_12BIT_MODE for the CompuGen 1100 and GGEN_16BIT_MODE for the CompuGen T30.

The rate and multiplier parameters together set the sample rate for the CompuGen. Allowable values
for the rate are:

Constant Value

GGEN_RATE_1 1
GGEN_RATE_2 2
GGEN_RATE_5 5
GGEN_RATE_10 10
GGEN_RATE_20 20
GGEN_RATE_50 50
GGEN_RATE_100 100
GGEN_RATE_200 200
GGEN_RATE_500 500
GGEN_RATE_40 40 Only used with GGEN_MHZ.
GGEN_RATE_80 80 Only used with GGEN_MHZ and CG1100

The sample rates increase in a 1, 2, 5 pattern (i.e. 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, etc.) up to 40
MHz. A sample rate of 80 MHz is only valid on the CompuGen 1100.

Gage Applied Technologies, Inc. 47

Allowable values for the multiplier are:

Constant Value

GGEN_HZ 1
GGEN_KHZ 2
GGEN_MHZ 3
GGEN_GHZ 4
GGEN_EXTERNAL_CLOCK 5
GGEN_SOFTWARE_CLOCK 6

If external clock is used, both the rate and multiplier should be set to GGEN_EXTERNAL_CLOCK.

The GGEN_SOFTWARE_CLOCK multiplier can be used to single-step through a pattern on the
CompuGen T30.

Return Value

A non-zero (True) value if the call was successful and a zero (False) if an error occurred. The type of
error can be determined by calling ggen_get_error_code.

See also

ggen_output_control and ggen_trigger_control

Examples

C
ret = ggen_generate_mode (GGEN_12BIT_MODE, GGEN_RATE_40, GGEN_MHZ);

Visual BASIC
ret = ggen_generate_mode (GGEN_12BIT_MODE, GGEN_RATE_40, GGEN_MHZ)

CompuGen SDK User’s Guide 48

ggen_get_boards_found

Syntax

C
#include <ggen_drv.h>
int16 ggen_get_boards_found (void);

Visual BASIC
Function ggen_get_boards_found () As Integer

Remarks

After calling ggen_driver_initialize to configure all board found in the system, ggen_get_boards_found
will return the number of CompuGen boards found in the system.

Return Value

The number of CompuGen boards currently installed by the DLL.

See also

ggen_driver_initialize

Examples

C
boards_found = ggen_get_boards_found ();

Visual BASIC
boards_found = ggen_get_boards_found

Gage Applied Technologies, Inc. 49

ggen_get_config_filename

Syntax

C
#include <ggen_drv.h>
int16 ggen_get_config_filename (LPSTR cfgfn);

Visual BASIC
Function ggen_get_config_filename (ByVal board_loc_file As String) As Integer

Remarks

ggen_get_config_filename determines the complete path to the configuration file GAGE_GEN.INC.
This file contains the memory segment and I/O address pair used by each CompuGen board in the
system. By default, the DOS CompuGen drivers look for the GAGE_GEN.INC file in the current working
directory. The Windows drivers expect to find the GAGE_GEN.INC file in the Windows directory.

cfgfn is a string variable that must be long enough to hold the returned path.

The GAGE_GEN.INC file can be created with either the CGINST.EXE utility (for CG1100 and CGT30
under DOS), CGWIN.EXE (for CG1100 under Windows) or CGT30.EXE (for CGT30 under Windows)

Return Value

A true value is returned, if the routine successfully returned the configuration filename.

See also

ggen_read_config_file

Examples

C
ret = ggen_get_config_filename ((LPSTR)(board_loc_file));

Visual BASIC
i = ggen_get_config_filename (board_loc_file)

CompuGen SDK User’s Guide 50

ggen_get_driver_info

Syntax

C
#include <ggen_drv.h>
void ggen_get_driver_info ((ggen_driver_info_type far*)(driver_info));

Visual BASIC
Sub ggen_get_driver_info (driver_info As ggen_driver_info_type)

Remarks

ggen_get_driver_info fills a structure or record with the relevant information from the driver, with
variables as to the current settings of the current CompuGen. This structure is a subset of the data
structure used internally by the driver and includes only those values that have meaning to the control
program. The structure returned from this routine is used to determine the settings of the currently
selected CompuGen board. It should not be used to change the settings of the driver. If driver settings
need to be changed, they should be done so by calling the appropriate DLL routine.

The ggen_driver_info_type structure is shown below. A similar structure is defined for Visual BASIC.

typedef struct {
 uInt16 index;
 uInt16 segment;
 uInt16 selector;
 uInt16 offset;
 uInt8 far *memptr;
 int16 mode;
 int16 rate;
 int16 multiplier;
 int16 oneshot; /* endless or not endless */
 int32 max_memory;
 int16 board_type;
 int16 o_range;
 int16 o_filter;
 int16 t_source;
 int16 t_slope;
 int16 t_range;
 int16 t_level;
 int16 ext_clk_50ohm;
 int16 ext_trig_50ohm;
 int16 gate_lc_50ohm;
 int16 inter_ctrl_50ohm;
} ggen_driver_info_type;

Return Value

None, but the structure or record is filled with the proper information from the DLL's structure.

Gage Applied Technologies, Inc. 51

See also

Description of the structure on page 16.

Examples

C
ggen_driver_info_type driver_info
ggen_get_driver_info (&driver_info);

Visual BASIC
ggen_get_driver_info driver_info

CompuGen SDK User’s Guide 52

ggen_get_error_code

Syntax

C
#include <ggen_drv.h>
int16 ggen_get_error_code (void);

Visual BASIC
Function ggen_get_error_code () As Integer

Remarks

ggen_get_error_code returns the error code associated with the last call to the CompuGen DLL.

Return Value

The error that occurred and the board that caused the error. This function returns a value, which is
encoded with the high byte containing the board in error, and the low byte is set to a defined error
constant. These constants are:

Constant Value (in hex)

GGEN_NO_ERROR 0x00
GGEN_NO_SUCH_MODE 0x01
GGEN_NO_SUCH_SAMPLE_RATE 0x02
GGEN_INVALID_SAMPLE_RATE 0x03
GGEN_NO_SUCH_BOARD 0x04
GGEN_NO_SUCH_GAIN 0x05
GGEN_NO_SUCH_TRIG_SLOPE 0x06
GGEN_NO_SUCH_TRIG_SOURCE 0x07
GGEN_LOAD_INVALID_CHANNEL 0x08
GGEN_LOAD_INVALID_LENGTH 0x09
GGEN_NO_PATTERN_LOADED 0x0A
GGEN_NO_SUCH_SYNC_OUT 0x0B
GGEN_INVALID_CLK_SOURCE 0x0C
GGEN_NO_SUCH_TRIG_RANGE 0x0D
GGEN_MISC_ERROR 0xff

For example, an error code of 0x105 signifies that the output gain for board 1 is invalid.

Gage Applied Technologies, Inc. 53

In addition to these errors, there are other errors that can occur during initialization. These errors can
occur after calling ggen_driver_initialize:

 Constant Value (in hex)

 GGEN_BAD_LSB_SEGMENT 0x0001
 GGEN_BAD_MSB_SEGMENT 0x0002
 GGEN_BAD_LSB_INDEX 0x0004
 GGEN_BAD_MSB_INDEX 0x0008
 GGEN_DETECT_FAILED 0x0010
 GGEN_MEMORY_FAILED 0x0020
 GGEN_BAD_MEMORY_SIZE 0x0040

See also

Nothing.

Examples

C
ret = ggen_get_error_code ();

Visual BASIC
ret = ggen_get_error_code()

CompuGen SDK User’s Guide 54

ggen_load_vram_from_buffer

Syntax

C
#include <ggen_drv.h>
int16 ggen_load_vram_from_buffer (int32 length, uInt16 far *buffer, int32 loop_number, int16 end_flag);

Visual BASIC
Sub ggen_load_vram_from_buffer (ByVal length As Long, ptr As Integer, ByVal loop_number As Long,
 ByVal end_flag As Integer) As Integer

Remarks

This routine is used to load the CompuGen internal buffer with the data passed to it. The length
parameter is the number of int16 values in the user-supplied buffer. The buffer parameter is a uInt16
buffer which holds the pattern to be generated. The loop_number is used to tell the driver how many
times to generate the current pattern. This parameter is for future use and should currently be set to 1.
The number of times to generate should be controlled by using the ggen_set_outer_loop_counter
routine. The end_flag parameter is a flag used to tell the driver which is the last pattern to be loaded.
This parameter should usually be set to 1. If you have a larger pattern, it can be faster to load it into the
CompuGen memory in chunks. In this case, each chunk should have an end flag of 0, except for the last
chunk, which should have an end flag of 1.

The CompuGen 1100 uses a uInt16 buffer to load the pattern onto the on-board memory. The
CompuGen T30 can use either a 32 bit buffer or a 16 bit buffer. Regardless of which is used, the length
parameter is the number of 16 bit values in the buffer. If a 16 bit buffer is used with the CompuGen T30,
the data is loaded in high word, low word format.

The CG1100 expects a buffer with values ranging from 0 to 4095. A 0 value represents the highest
voltage in the current output range. A value of 4095 represents the lowest voltage in the current output
range.

The CGT30 can be filled either with a buffer of 16 bit values or a buffer of 32 bit values (cast as int16 * in
the call). In either case, the length parameter must be the number of 16 bit values in the buffer. If a
buffer of 16 bit values is used, each two consecutive 16 bit values are treated as the low-high halves of a
32 bit word. For example, a counter pattern can be loaded as follows:

Value Binary (32 bits)

0 00000000000000000000000000000000
1 00000000000000000000000000000001
2 00000000000000000000000000000010
3 00000000000000000000000000000011
4 00000000000000000000000000000100
5 00000000000000000000000000000101
6 00000000000000000000000000000110
7 00000000000000000000000000000111

In this case, the length parameter would be 16 (eight 32 bit values = sixteen 16 bit values).

Gage Applied Technologies, Inc. 55

Value Binary (16 bits)

0 0000000000000000
0 0000000000000000
1 0000000000000001
2 0000000000000000
3 0000000000000010
4 0000000000000000
5 0000000000000011
6 0000000000000000
7 0000000000000100
8 0000000000000000
9 0000000000000101
10 0000000000000000
11 0000000000000110
12 0000000000000000
13 0000000000000111
14 0000000000000000

In this case, the buffer is filled with 16 bit values and the length is also 16.

Return Value

A 1 is returned upon successful completion of ggen_load_vram_from_buffer. A negative number is
returned if an error occurred. The error code may be obtained by calling ggen_get_error_code.

See also

ggen_set_outer_loop_counter

Examples

C
ggen_load_vram_from_buffer (wave_length, (uInt16 *)wave_buffer, 1, 1);

Visual BASIC
ret = ggen_load_vram_from_buffer (SizeFile, buffer(0), 1, 1)

CompuGen SDK User’s Guide 56

ggen_memory_test

Syntax

C
#include <ggen_drv.h>
int32 ggen_memory_test (uInt32 offset, uInt32 size);

Visual BASIC
Function ggen_memory_test (ByVal offset As Long, ByVal size As Long) As Long

Remarks

The routine ggen_memory_test is used to test the on-board memory of a CompuGen board. The
routine will randomly create and load a pattern into the CompuGen's memory, then read it back and
compare it to the original pattern.

The offset parameter is used to tell the routine where to begin testing. It is the offset in bytes from the
beginning of the CompuGen's on-board memory. The size parameter is the number of bytes to be
tested.

Return Value

If no errors occur, a -1 is returned. If there are errors (i.e. the pattern read back is not the same as the
pattern loaded onto the CompuGen), the offset where the first error occurred is returned.

See also

ggen_load_vram_from_buffer

Examples

C
ret = ggen_memory_test (0, 32768);

Visual BASIC
ret = ggen_memory_test (0, 32768)

Gage Applied Technologies, Inc. 57

ggen_output_control

Syntax

C
#include <ggen_drv.h>
int16 ggen_output_control (int16 range, int16 filter);

Visual BASIC
Function ggen_output_control (ByVal range As Integer, ByVal filter As Integer) As Integer

Remarks

ggen_output_control sets the range and filter parameters of the analog output signal. The range
parameter sets the gain of the generated signal. Output levels to ±5 volts (assuming a 50 ohm load) are
possible. The filter parameter controls which analog filter is used. The analog filter is used to smooth out
the signal above certain frequencies. Allowable values for the gain are:

 Constant Value

GGEN_TIMES_5 1
GGEN_TIMES_2 2
GGEN_TIMES_1 3

 GGEN_TIMES_0_POINT_5 4
GGEN_TIMES_0_POINT_2 5
GGEN_TIMES_0_POINT_1 6

These ranges are for the CompuGen 1100. The CompuGen T30 only outputs a TTL signal. Note that
the CompuGen 1100 assumes a 50 ohm load on the output. If there is none, the output will be double the
expected range.

The valid values for the output filter are:

Constant Value

GGEN_NO_FILTER 0
GGEN_FILTER_20MHZ 1
GGEN_FILTER_5MHZ 3

The filter values have no effect on a CompuGen T30. Valid values should still be used in the call to
ggen_output_control if a CompuGen T30 is being used.

Return Value

A TRUE (non-zero) value is returned after a successful call. A FALSE (zero) value is returned if an error
is encountered. The routine ggen_get_error_code can then be called to obtain the error code.

See also

ggen_generate_mode and ggen_get_error_code

CompuGen SDK User’s Guide 58

Examples

C
ret = ggen_output_control (board.output_range, board.output_filter);

Visual BASIC
ret = ggen_output_control (board.output_range, board.output_filter)

Gage Applied Technologies, Inc. 59

ggen_pad_value

Note: This routine is for the CGT30 only.

Syntax

C
#include <ggen_drv.h>
void ggen_pad_value (int32 control, int32* value);

Visual BASIC
ggen_pad_value (ByVal control As Long, value As Long)

Remarks

This routine is used to pad the starting and ending values being generated on a CompuGen T30 in single
shot mode to ensure that erroneous data in the pipeline does not enter into the data stream before the
actual pattern is generated. If used, this routine should be called before the call to
ggen_load_vram_from_buffer for it to have any effect. The control parameter is the action to take and
the value parameter is either the value to use for padding (if the control parameter is one of the set
constants), or the currently used padding value (if the control parameter is one of the get constants).

The available constants to use for the control parameter are:

Constant Meaning

PAD_SET_START (0) Pad the value in start position

 PAD_GET_START (1) Return the padding value for start position
 PAD_SET_END (2) Pad the value at the end position
 PAD_GET_END (3) Return the padding value for the end position

The available constants for the value parameter are:

 Constant Value

 PAD_VALUE_LOW (0) pad with 0
 PAD_VALUE_HIGH (1) pad with 1
 PAD_VALUE_ADJACENT (2) pad with the value of adjacent sample
 PAD_VALUE_PREVIOUS (3) pad with the previous padding value

Return Value

None

See also

ggen_load_vram_from_buffer

CompuGen SDK User’s Guide 60

Examples

C
ggen_pad_value (PAD_SET_START, PAD_VALUE_LOW);

Visual BASIC
ggen_pad_value (PAD_SET_START, PAD_VALUE_LOW)

Gage Applied Technologies, Inc. 61

ggen_read_config_file

Syntax

C
#include <ggen_drv.h>
int16 ggen_read_config_file (LPSTR far_filename, uInt16 far *records);

Visual BASIC
Function ggen_read_config_file (ByVal filename As String, records As Integer) As Integer

Remarks

ggen_read_config_file reads the configuration file GAGE_GEN.INC and stores the data in an array of
uInt16s. The parameter filename is a text string that tells the routine the path and name of the file that
contains the board indexes and starting segment values for each of the installed CompuGen boards. This
configuration file is named GAGE_GEN.INC. The SDK for DOS assumes the default location of this file is
in the current directory. The SDKs for Windows assume that the default location is in the Windows
directory. The full path to the file can be obtained by calling ggen_get_config_filename. Alternatively,
the application program can provide its own path in the filename parameter.

Under DOS, the GAGE_GEN.INC file can be created with either the CGINST.EXE utility that comes with
the SDK for DOS. Under Windows, use either CGWIN.EXE (on the CompuGen for Windows disk for
CompuGen 1100) or CGT30.EXE (on the CGT30 Software disk for CompuGen T30). These utilities
come with your CompuGen board.

The records parameter is assumed to be an uninitialized uInt16 array supplied by the application
program. This array must be GGEN_B_L_BUFFER_SIZE (48) bytes long. The format of the array is as
follows: the first GGEN_B_L_STATUS_START (32) uInt16s are for the board segment and index values,
and each pair occupies GGEN_B_L_ELEMENT_SIZE (2) uInt16s, for each of the possible
GGEN_B_L_MAX_CARDS (16) boards.

A status field is provided for each potential board location, which is GGEN_B_L_STATUS_SIZE (1)
uInt16s in length. The values for the status field are constants that correspond to bit positions in the
status field and must be masked to determine which errors occurred when initializing the board. The low
nibble is for problems with the segment and index.

CompuGen ggen_board_location (defined in GGEN_DRV.H file) array "pseudo structure"

array index: 0 1 2 3 ... 30 31 32 33 34 35 ... 46 47
meaning: S1 I1 S2 I2 ... S16 I16 E1 E2 E3 E4 ... E15 E16

where: Sx = segment for board x,
 Ix = index for board x,
 Ex = returned board type or error status for board x

CompuGen SDK User’s Guide 62

The possible error codes for the status fields are:

GGEN_BAD_LSB_SEGMENT (0x0001) means that the low order byte of the segment was not
equal to zero.

GGEN_BAD_MSB_SEGMENT (0x0002) is used when the segment is either less than A000 hex
or greater than DF00 hex (the valid area in the memory map reserved for slot resources is
0xA0000 to 0xDFFFF).

GGEN_BAD_LSB_INDEX (0x0004) is set when the least significant bit of the index is not zero.

GGEN_BAD_MSB_INDEX (0x0008) is used when the high order byte of the index is either equal
to 00 hex or greater than 03 hex (the valid area in the I/O map reserved for slot resources is 0100
hex to 03ff hex).

Return Value

The return value represents the number of records initialized if the return value is greater than 0. If the
number is less than zero then the number corresponds to the error encountered. The errors are:

-1, file does not exist
-2, file cannot be opened
-3, file size cannot be determined
-4, file size modulo four is not zero
-5, file size indicates that more boards than the DLL supports are present
-6, file cannot be read successfully
-7, file cannot be closed
0, reserved for future use

See also

ggen_driver_initialize and ggen_get_config_filename

Examples

C
expected = ggen_read_config_file ((LPSTR)("GAGE_GEN.INC"), (uInt16 far*)(&ggen_board_location));

Visual BASIC
i = ggen_get_config_filename (board_loc_file)
expected = ggen_read_config_file (board_loc_file, ggen_board_location (0))

Gage Applied Technologies, Inc. 63

ggen_select_board

Syntax

C
#include <ggen_drv.h>
int16 ggen_select_board (int16 board);

Visual BASIC
Function ggen_select_board (ByVal board As Integer) As Integer

Remarks

ggen_select_board is used to select a CompuGen board and make it the current board. Most
CompuGen driver functions are performed on the current board.

Return Value

The integer returned equals the value passed to the function as board. If an error occurs or the value
passed to the function exceeds the number of boards installed in the system, then the return value does
not equal board and ggen_get_error_code may be called to obtain the error code.

See also

ggen_driver_initialize

Examples

C
if (ggen_select_board (1) != 1)

sprintf(str, "Error while selecting board!\n",);

Visual BASIC
ret = ggen_select_board (1)
If ret <> 1 Then

MsgBox "Error while selecting board # 1", 48, "Error"
 Exit Sub
End If

CompuGen SDK User’s Guide 64

ggen_set_clock_level

Note: This routine is for CompuGen boards with the External Clock option only.

Syntax

C
#include <ggen_drv.h>
void ggen_set_clock_level (uInt16 level);

Visual BASIC
Sub ggen_set_clock_level (ByVal As Integer)

Remarks

This routine can be used to change the external clock threshold level on a CompuGen board. The
threshold level is the level at which data will be clocked out of the CompuGen board. The level is a uInt16
value ranging from 0 to 255, where 0 represents -2.5 volts and 255 represents 2.5 volts. Note that the
differential between the actual clock signal and the threshold value should not be too large for proper
operation of the CompuGen board.

The default external clock threshold value is 1.2 volts.

Return Value

None.

See also

ggen_generate_mode

Examples

C
ggen_set_clock_level (192);

Visual BASIC
ggen_set_clock_level (192)

Gage Applied Technologies, Inc. 65

ggen_set_filter_on

Note: This routine is for CG1100 only.

Syntax

C
#include <ggen_drv.h>
int16 ggen_set_filter_on (int16 filter);

This routine is not available in Visual BASIC.

Remarks

This routine is used to set the analog filter for the CompuGen 1100. The analog filter is used to smooth
out the generated signal above certain frequencies. There are no filters available for CGT30. It is
recommended that the filter be set by calling ggen_output_control, rather than by calling
ggen_set_filter_on.

The available filter values are:

 Constant Value

GGEN_NO_FILTER 0
GGEN_FILTER_20MHZ 1
GGEN_FILTER_5MHZ 3

Return Value

A 0 is returned if an error occurred while trying to set the filter. ggen_get_error_code can then be called
to determine the error. If 1 is returned, if the routine completed successfully.

See also

ggen_output_control

Examples

C
ret = ggen_set_filter_on (GGEN_FILTER_5MHZ);

CompuGen SDK User’s Guide 66

ggen_set_independent_operation

Syntax

C
#include <ggen_drv.h>
void ggen_set_independent_operation (int16 on);

Visual BASIC
Sub ggen_set_independent_operation (ByVal on As Integer)

Remarks

This routine sets all CompuGen boards found in the system to work in Multiple/Independent mode.
Multiple/Independent mode means that each CompuGen board can have a different sample rate and
does not have to generate data at the same time. By default, the driver will assume that multiple boards
are in Master/Slave mode. In Master/Slave mode, multiple CompuGen boards share the same sample
rate clock and trigger. In this mode, all boards in the system will begin generation when the Master board
(board 1) is triggered.

The ggen_set_independent_operation routine should be called after the driver has been initialized with
ggen_driver_initialize. If it is called from elsewhere in the program, all parameters should be reset by
calling the appropriate functions. If the parameter on is non-zero, the driver will set multiple boards to
Multiple/Independent mode. A 0 value will set the driver to Master/Slave mode. Note that the routine
assumes that you have the proper hardware (either Master/Slave or Multiple/Independent) for the mode
you have selected. The routine has no effect if there is only one CompuGen board in the system.

Return Value

None.

See also

ggen_driver_initialize

Examples

C
int16 on ;
on = 1;
ggen_driver_initialize ((uInt16 far *)ggen_board_location, GGEN_MEMORY_SIZE_TEST);
ggen_set_independent_operation(on);

Visual BASIC
ggen_driver_initialize (ggen_board_location(0), GGEN_MEMORY_SIZE_TEST)
ggen_set_independent_operation (1)

Gage Applied Technologies, Inc. 67

ggen_set_outer_loop_counter

Syntax

C
#include <ggen_drv.h>
void ggen_set_outer_loop_counter (uInt16 count);

Visual BASIC
Sub ggen_set_outer_loop_counter (ByVal count As Integer)

Remarks

The ggen_set_outer_loop_counter routine is used to tell the CompuGen board how many times to
generate the pattern loaded into its internal memory. The count parameter is the number of times to
generate the pattern. A value 0 will generate continuously. If the parameter is non-zero, the hardware will
generate the pattern count number of times before stopping. The maximum number of times to generate
in non-continuous mode is 65535.

This return is preferable to the ggen_single_shot routine, as it is more flexible. The ggen_single_shot
routine allows the user to choose between one-shot mode or continuous mode.

Return Value

None

See also

ggen_load_vram_from_buffer

Examples

C
ggen_set_outer_loop_counter (100);

Visual BASIC
ggen_set_outer_loop_counter (0)

CompuGen SDK User’s Guide 68

ggen_set_records

Syntax

C
#include <ggen_drv.h>
int16 ggen_set_records (uInt16 far *records, int16 record, uInt16 segment, uInt16 index, uInt16 status);

Visual BASIC
Function ggen_set_records (records As Integer, ByVal record As Integer, ByVal segment As

Integer, ByVal index As Integer, ByVal status As Integer) As Integer

Remarks

ggen_set_records initializes the structure that is used for the initialization of the DLL without requiring
the configuration file that contains the board locations. records is an array of words with
GGEN_B_L_BUFFER_SIZE elements. record is the record in the array records to be updated.
segment, index and status are the three values to be used to initialize the records array. This routine is
often used to try and initialize a CompuGen board using default values if no GAGE_GEN.INC file is found.

The records parameter is assumed to be an uninitialized uInt16 array supplied by the application
program. This array must be GGEN_B_L_BUFFER_SIZE (48) bytes long. The format of the array is as
follows: the first GGEN_B_L_STATUS_START (32) uInt16s are for the board segment and index values,
and each pair occupies GGEN_B_L_ELEMENT_SIZE (2) uInt16s, for each of the possible
GGEN_B_L_MAX_CARDS (16) boards.

A status field is provided for each potential board location which is GGEN_B_L_STATUS_SIZE (1)
uInt16s in length. The values for the status field are constants that correspond to bit positions in the
status field and must be masked to determine which errors occurred when initializing the board. The low
nibble is for problems with the segment and index.

CompuGen ggen_board_location (defined in GGEN_DRV.H file) array "pseudo structure"

array index: 0 1 2 3 ... 30 31 32 33 34 35 ... 46 47
meaning: S1 I1 S2 I2 ... S16 I16 E1 E2 E3 E4 ... E15 E16

where: Sx = segment for board x,
 Ix = index for board x,
 Ex = returned board type or error status for board x,

Gage Applied Technologies, Inc. 69

The possible error codes for the status fields are:

GGEN_BAD_LSB_SEGMENT (0x0001) means that the low order byte of the segment was not
equal to zero.

GGEN_BAD_MSB_SEGMENT (0x0002) is used when the segment is either less than A000 hex
or greater than DF00 hex (the valid area in the memory map reserved for slot resources is
0xA0000 to 0xDFFFF.

GGEN_BAD_LSB_INDEX (0x0004) is set when the least significant bit of the index is not zero.

GGEN_BAD_MSB_INDEX (0x0008) is used when the high order byte of the index is either equal
to 00 hex or greater than 03 hex (the valid area in the I/O map reserved for slot resources is 0100
hex to 03ff hex).

Return Value

The return value is true (non-zero) if the record specified is put into the array records and is false (zero)
otherwise. Possible causes for a return of 0 are that the specified record is less than 0 or greater than
GAGE_B_L_BUFFER_SIZE (48).

See also

ggen_driver_initialize and ggen_read_config_file

Examples

C
void SetDefaultBoardLocation (uInt16 seg, uInt16 ind)
{
 int16 i;
 ggen_set_records ((uInt16 far *)ggen_board_location, 0, seg, ind, 0);
 for (i = 1 ; i < GGEN_B_L_MAX_CARDS ; i++)
 ggen_set_records ((uInt16 far *)ggen_board_location, i, 0, 0, 0);
}

Visual BASIC
Sub SetDefaultBoardLocation (ByVal seg As Integer, ByVal ind As Integer)
 Dim i As Integer, dummy As Integer
 dummy = ggen_set_records (ggen_board_location (0), 0, set, ind, 0)
 For i = 1 To GGEN_B_L_MAX_CARDS - 1
 dummy = ggen_set_records (ggen_board_location (0), i, 0, 0, 0)
 Next i
End Sub

CompuGen SDK User’s Guide 70

ggen_set_sync_out

Note: This routine is for CG1100 only.

Syntax

C
#include <ggen_drv.h>
int16 ggen_set_sync_out (int16 sync_out);

Visual BASIC
Function ggen_set_sync_out (ByVal sync_out As Integer) As Integer

Remarks

This routine is used to set which analog sync output is being used for the CG1100. The available
parameters are:

 Constant Value

 CG1100_SYNC_OUT_1 1
 CG1100_SYNC_OUT_2 2

CG1100_SYNC_OUT_1 can be used to set sync bit 1 and CG1100_SYNC_OUT_2 can be used to set
synch bit 2. By default, both sync bits are turned on and either can be used. The synch bits can also be
used by turning them on and off from within the pattern itself. Turning off bits 14 and 15 in the pattern will
turn on both the sync bits at that position. Turning the bits on will turn off the sync bits. For example:

 /* Turn off the synch output at position 1000 by making bits 14 and 15 high */
 buffer[1000] = buffer[1000] | 0xC000;

 /* Turn on the synch output at position 2000 by making bits 14 and 15 low */
 buffer[2000] = buffer[1000] & 0x3FFF;

Return Value

If the routine is successful a non-zero value is returned. If an error occurs, a zero value is returned and
ggen_get_error_code can be called to determine the error.

Examples

C
ret = ggen_set_sync_out (CG1100_SYNC_OUT_1);

Visual BASIC
ret = ggen_set_sync_out (CG1100_SYNC_OUT_1)

Gage Applied Technologies, Inc. 71

ggen_single_shot

Syntax

C
#include <ggen_drv.h>
void ggen_single_shot (int16 oneshot);

Visual BASIC
Sub ggen_single_shot (ByVal oneshot As Integer)

Remarks

ggen_single_shot controls whether only one complete data generation cycle is allowed. A call to this
function with a TRUE (non-zero) value parameter allows only one data generation cycle after the
CompuGen hardware receives a trigger event. A FALSE (zero) value will cause the data to be generated
continuously. It is recommended that application programs use ggen_set_outer_loop_counter rather
than this routine, as it allows for greater flexibility.

Return Value

None.

See also

ggen_set_outer_loop_counter

Examples

C
ggen_single_shot (board.generate_once); /* board.generate_once can be TRUE of FALSE.*/

Visual BASIC
ggen_single_shot board.generate_once ' Either TRUE (non-zero) or FALSE (zero).

CompuGen SDK User’s Guide 72

ggen_software_clock_pulse

Syntax

C
#include <ggen_drv.h>
void ggen_software_clock_pulse (void);

Visual BASIC
Sub ggen_software_clock_pulse ()

Remarks

ggen_software_clock_pulse will generate data conversions under software control. This routine is
usually used to generate a very slow sample conversion rate or when a special function is desired and the
regular clocked sample rate will not do. Another use for this routine is to single-step data generation on a
CompuGen T30. A clock pulse is sent out each time ggen_software_clock_pulse is called.

Note: prior to calling ggen_software_clock_pulse, the multiplier parameter must be set to
GGEN_SOFTWARE_CLOCK with a call to ggen_generate_mode. The rate parameter in the call to
ggen_generate_mode has no effect on this call.

Return Value

None.

See also

ggen_generate_mode

Examples

C
ggen_generate_mode (GGEN_DUAL_MODE, GGEN_SOFTWARE_CLOCK,
 GGEN_SOFTWARE_CLOCK);
/* other set up calls, i.e. ggen_output_control, etc. */
ggen_software_trigger ();
ggen_dump_data ();
ggen_software_clock_pulse (); /* Send out a clock pulse. */

Visual BASIC
temp = ggen_generate_mode (GGEN_DUAL_MODE, GGEN_SOFTWARE_CLOCK,
 GGEN_SOFTWARE_CLOCK)
/* Other set up calls, i.e. ggen_output_control, etc. */
Call ggen_software_trigger
Call ggen_dump_data
Call ggen_software_clock_pulse /* Send out a clock pulse. */

Gage Applied Technologies, Inc. 73

ggen_software_trigger

Syntax

C
#include <ggen_drv.h>
void ggen_software_trigger (void);

Visual BASIC
Sub ggen_software_trigger ()

Remarks

ggen_software_trigger allows the CompuGen to trigger from the result of a software event (immediate
output) rather than waiting for a hardware trigger event to occur. The trigger source must be previously
set to GGEN_SOFTWARE when calling to ggen_trigger_control.

Return Value

None.

See also

ggen_trigger_control

Examples

C
if (board.t_source == GGEN_SOFTWARE){
 ggen_software_trigger ();
}

Visual BASIC
If board.t_source = GGEN_SOFTWARE Then
 ggen_software_trigger
End If

CompuGen SDK User’s Guide 74

ggen_trigger_control

Syntax

C
#include <ggen_drv.h>
int16 ggen_trigger_control (int16 source, int16 slope, int16 range, int16 level);

Visual BASIC
Function ggen_trigger_control (ByVal source As Integer, ByVal slope As Integer,
 ByVal range As Integer, ByVal level As Integer) As Integer

Remarks

ggen_trigger_control is used to set up the trigger parameters of the CompuGen. The source parameter
sets the trigger source, which can be either external or software. If the source is set to software, the
CompuGen board will trigger as soon as the routine ggen_software_trigger is called. If the trigger
source is set to external, the board(s) will not generate data until an external trigger is received. The
following constants can be used:

 Constant Value

 GGEN_EXTERNAL 0
 GGEN_SOFTWARE 1

The trigger slope can be either positive or negative, using the constants GGEN_POSITIVE and
GGEN_NEGATIVE. This determines if the board(s) will be triggered on the rising or falling edge of an
external trigger. The slope parameter has no effect if the trigger source is software. The following
constants are available:

 Constant Value

 GGEN_POSITIVE 0
 GGEN_NEGATIVE 1

The trigger range is used to determine the range of the external trigger. The only available ragne is ±5
volts The range parameter has no effect if the trigger source is set to software. The following constant
should be used:

 Constant Value

 GGEN_TIMES_5 1

The trigger level can be any value between 0 and 255, with 0 equal to the lowest voltage in the current
trigger range and 255 equal to the highest voltage in the current trigger range. The level parameter has
no effect if the trigger source is set to software. The CompuGen T30 has only a TTL range for external
trigger.

Valid values should be used for all parameters in the call, regardless of whether or not they are being
used.

Gage Applied Technologies, Inc. 75

Return Value

A TRUE (non-zero) value is returned if the routine was successful, otherwise a FALSE (zero) value is
returned and a call to ggen_get_error_code can be used to obtain the error code. Most errors are due
to the use of an invalid parameter.

See also

ggen_generate_mode and ggen_output_control

Examples

C
ret = ggen_trigger_control (GGEN_EXTERNAL, GGEN_POSITIVE, GGEN_TIMES_5, 192);

Visual BASIC
ret = ggen_trigger_control (GGEN_EXTERNAL, GGEN_POSITIVE, GGEN_TIMES_5, 192)

CompuGen SDK User’s Guide 76

Quick Reference:
Sample Programs Included with the CompuGen SDKs

Program name Files included Description

CGDEMO

In C for Win 95/98 and
Win NT

C files

cgdemo.c

support.c

sigfile.c

Header files

cgdemo.h

sigfile.h

whichgen.h

cg1100.h

ggen_drv.h

Lib file

cgwindll.lib

Resource files

cgdemo.ico

cgdemo.rc

Inc file

gage_gen.inc

CGDEMO.EXE is a demo
program for CompuGen 1100
and CompuGen T30 boards. It
supports up to 8 boards
working together in either
Master/Slave or Multiple/
Independent mode.

The main features of this
program include:

1. A greater range of signals to
choose from, including sine
wave, square wave, triangle
wave, linear, and Gage signal
file (*.sig).

2. For CG1100 boards, the
user can select parameters for
trigger control, sample
frequency, loop number, output
range and filter.

3. For CGT30 boards, the user
can select parameters for
trigger control, clock source,
and timer frequency.

4. Full range memory test.

Gage Applied Technologies, Inc. 77

Program name Files included Description

CG_OUT

In C for Win 95/98 and
Win NT

C files

cg_out.c

error_msg.c

generate.c

ofiles.c

Header files

error_msg.h

generate.h

ofiles.h

ggen_drv.h

whichgen.h

Lib file

cgwindll.lib

Text file

Default.cgi

GageScope signal file

Default.sig

This program will read a CGI
file with all the required
parameters and generate a
signal.

Note:

Format of the command line to
run this program:

drive:\path *.exe *.cgi

e.g.:

c:\cg_out.exe default.cgi

CG_OUT

In Visual BASIC for
Win 95/98 and
Win NT

Form

main.frm

frmMsg.frm

frmHelp.frm

frmAbout.frm

ComDia.frm

Modules

Global.bas

module1.bas

module2.bas

Text file

Default.cgi

GageScope signal file

Default.sig

This program will read a CGI
file with all the required
parameters and generate a
signal.

Note:

With this version of the
program there is no command
line, but in order to read the
CGI file, you must click on the
OPEN CGI FILE button.

CompuGen SDK User’s Guide 78

Glossary

Digital to Analog Conversion

Digital to Analog (D/A) conversion is the process by which an analog signal is generated based on an n-
bit digital word or series of words. In other words, D/A conversion converts a discrete digital signal into a
continuous analog signal.

Vertical Resolution

The number of bits with which a D/A system can specify the amplitude of the analog signal is its vertical
resolution.

D/A Conversion Rate

In any practical D/A system, conversion is controlled by a clock. The frequency of this clock is called the
Conversion Rate and is measured in MegaSamples per Second (MS/s).

Arbitrary Waveform Generation

One common application of D/A conversion is Arbitrary Waveform Generation. An Arbitrary Waveform
Generator (ARB) is an instrument which allows the user to generate complex aperiodic waveforms by
specifying a mathematical equation or a digital pattern.

Digital Pattern Generation

One interesting by-product of Arbitrary Waveform Generators is a Digital Pattern Generator. A Pattern
Generator can output an n-bit-wide digital pattern which the user can program using simple keyboard
commands.

Conversion Rate vs. Output Frequency

An analog signal is generated by an ARB by specifying a series of digital words which are converted to
analog at the conversion rate. If the analog signal must be cyclical, e.g. a sine wave, the digital pattern
must be repeated over and over again to create the cyclical analog output. In general, there must be 8 to
10 digital words (points) in a pattern to create a good-quality analog signal.

Memory Depth

The maximum number of digital points that an ARB can use to generate analog signals is called the
Memory Depth. Memory depth is measured in kilosamples or Megasamples.

Memory Looping

One way of increasing or optimizing the memory depth in an ARB is to allow it to loop on a specific
pattern for a given number of times. While most ARBs do not have this capability, the higher-end models
such as the CompuGen 1100 do. With memory looping, it is possible to generate 1000 cycles of a 1 MHz
sine wave at a conversion rate of 80 MS/s, using only 80 sample points. Without memory looping, the
same output would have required 80,000 sample points!

Gage Applied Technologies, Inc. 79

Filtering

The output of an ideal D/A converter is a step function which contains very high frequency components,
usually not found desirable for testing analog circuits. As such, the output of the ARB may need to be
filtered in order to smooth the signal. Additional filters may be applied to reduce noise and provide band-
limited signals.

Output Bandwidth

The output bandwidth of an ARB is related to the D/A conversion rate as well as the analog bandwidth of
the output amplifier. For example, the bandwidth of the CompuGen 1100 is specified as 20 MHz, even
though the conversion rate is 80 MS/s. As discussed earlier, the bandwidth has to be four to ten times
less than the conversion rate.

Glitch Energy

One of the key characteristics of any ARB is the Glitch Energy of the D/A. Glitch Energy is defined as the
area under the curve around zero-crossing, when the signal is changing its polarity. In simpler terms,
Glitch Energy measures the error signal generated by switching the MSB from, say low to high, while all
other bits are switching from high to low (and vice-versa). This error is caused by a small skew in the
internal switching of the signals.

Trigger Control

CGWin allows the user to take advantage of the flexible triggering capabilities of the CompuGen cards.
Both internal and external triggering are supported.

CompuGen SDK User’s Guide 80

Technical Support

Gage Applied Technologies, Inc. offers free technical support for all its drivers.

Technical support is available by phone at:

 (800) 567-4243 (within North America)
 (514) 633-7447 (all other locations)

from 9:00 A.M. to 5:00 P.M. Eastern Standard Time, Monday to Friday.

Support is also available by fax at

 (800) 780-8411 (within North America)
 (514) 633-0770 (all other locations)

or by e-mail at

 prodinfo@gage-applied.com

Updated drivers are available at Gage’s Web site:

 http://www.gage-applied.com

When calling for support we ask that you have the following information available:

1. Version and type of your CompuGen SDK.

(The version number can be obtained at the top of any of the driver source files or on the
distribution diskette.)

2. Type, version and memory depth of your CompuScope card.

3. Type and version of your operating system.

4. Type and speed of your computer and bus.

5. Contents of your CONFIG.SYS and AUTOEXEC.BAT files.

6. Any extra hardware peripherals (i.e. CD-ROM, joystick, network card, etc.)

7. Were you able to reproduce the problem with CGWIN.EXE or CGT30.EXE.?

If the problem is with an application program you are writing, the simplest approach is often to
send us some of the code you are having problems with, along with other details such as
sample rate, trigger source, input signal, etc., either by fax or e-mail. This way, we can try to
reproduce the problem.

Gage Applied Technologies, Inc. 81

Gage Products

For ordering information, see Gage’s product catalog, or visit our web site at
http://www.gage-applied.com

CompactPCI Bus Products CompuScope 85GC 8 bit, 5 GS/s Analog Input Card
 CompuScope 82GC 8 bit, 2 GS/s Analog Input Card
 CompuScope 14100C 14 bit, 100 MS/s Analog Input Card
 CompuScope 1610C 16 bit, 10 MS/s Analog Input Card
 CompuScope 3200C 32 bit, 100 MHz Digital Input for CompactPCI Bus

PCI Bus Products CompuScope 1610 16 bit, 10 MS/s Analog Input Card
 CompuScope 1602 16 bit, 2.5 MS/s Analog Input Card
 CompuScope 14200 14 bit, 200 MS/s Analog Input Card
 CompuScope 14105 14 bit, 105 MS/s Analog Input Card
 CompuScope 14100 14 bit, 100 MS/s Analog Input Card
 CompuScope 1450 14 bit, 50 MS/s Analog Input Card
 CompuScope 12100 12 bit, 100 MS/s Analog Input Card
 CompuScope 1250 12 bit, 50 MS/s Analog Input Card
 CompuScope 1220 12 bit, 20 MS/s Analog Input Card
 CompuScope 85G 8 bit, 5 GS/s Analog Input Card
 CompuScope 82G 8 bit, 2 GS/s Analog Input Card
 CompuScope 8500 8 bit, 500 MS/s Analog Input Card
 CompuScope 3200 32 bit, 100 MHz Digital Input for PCI Bus

CompuGen CompuGen 1100 12 bit, 80 MS/s Analog Output Card
 CompuGen 3250 32 bit, 50 MHz Digital Output Card

Application Software GageScope World's Most Powerful Oscilloscope Software
 GageBit Digital Input/Output Software
 CompuGen for Windows Arbitrary Waveform Generator Software for Windows

Software Development Kits CompuScope SDK for C/C++ for Windows
 CompuScope LabVIEW SDK for Windows
 CompuScope MATLAB SDK for Windows
 CompuScope LabWindows/CVI SDK

 (for CompactPCI/PXI bus CompuScope cards)

 CompuGen Analog SDK for C/C++ for Windows
 CompuGen Digital SDK for C/C++ for Windows
 CompuGen Analog LabVIEW SDK for Windows
 CompuGen Digital LabVIEW SDK for Windows
 CompuGen Analog MATLAB SDK for Windows
 CompuGen Digital MATLAB SDK for Windows

Instrument Mainframes Instrument Mainframe 7000

Instrument Mainframe 2000

Instrument Mainframe 8000C

Instrument Mainframes for Housing CompuScope and
CompuGen Products.

Instrument Mainframes for Housing CompactPCI/PXI
CompuScope Products.

	Preface
	Introduction to the�CompuGen Software Development Kits (SDKs)
	Configuring your CompuGen Card
	Configuration under Windows 95/98 and Windows NT
	CompuGen 1100
	CompuGen T30

	Configuration under DOS

	Memory Organization
	Memory Architecture
	Interface for the ISA Bus

	Memory Organization from a�Programmer’s Point of View
	Accessing the Memory

	Important Definitions
	Application Development
	Initialization
	Board Setup
	Filling the Buffer
	Generating the Data
	Output Frequency
	CompuGen 1100
	CompuGen T30

	Sample Programs
	CompuGen SDK Basics: C
	The Sample Program CG_OUT: C for Windows
	Data Structures
	Structure of the CGI file

	Function Prototypes

	CompuGen SDK Basics: Visual BASIC
	The Sample Program CG_OUT: Visual BASIC
	Data Structures
	Function Prototypes

	Global Routines
	Global Routines: Variable Definitions for Examples
	ggen_abort
	ggen_driver_initialize
	ggen_dump_data
	ggen_ext_clock_ctrl_50ohm_on
	ggen_ext_trig_ctrl_50ohm_on
	ggen_force_pattern
	ggen_gate_lc_ctrl_50ohm_on
	ggen_generate_mode
	ggen_get_boards_found
	ggen_get_config_filename
	ggen_get_driver_info
	ggen_get_error_code
	ggen_load_vram_from_buffer
	ggen_memory_test
	ggen_output_control
	ggen_pad_value
	ggen_read_config_file
	ggen_select_board
	ggen_set_clock_level
	ggen_set_filter_on
	ggen_set_independent_operation
	ggen_set_outer_loop_counter
	ggen_set_records
	ggen_set_sync_out
	ggen_single_shot
	ggen_software_clock_pulse
	ggen_software_trigger
	ggen_trigger_control

	Quick Reference:�Sample Programs Included with the CompuGen SDKs
	Glossary
	Technical Support

